АРХИТЕКТУРА И ГРАДОСТРОИТЕЛЬСТВО. РЕКОНСТРУКЦИЯ И РЕСТАВРАЦИЯ

Энергетический метод расчета шума, проникающего в плоские помещения через стены

Вестник МГСУ 9/2014
  • Гиясов Ботир Иминжонович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, заведующий кафедрой архитектурно-строительного проектирования, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Антонов Александр Иванович - Тамбовский государственный технический университет (ФГБОУ ВПО «ТГТУ») кандидат технических наук, доцент, доцент кафедры архитектуры и строительства зданий, Тамбовский государственный технический университет (ФГБОУ ВПО «ТГТУ»), 392032, г. Тамбов, ул. Мичуринская, д. 112, корп. Е, 8 (4752) 63-03-82, 63-04-39; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Матвеева Ирина Владимировна - Тамбовский государственный технический университет (ФГБОУ ВПО «ТГТУ») кандидат технических наук, доцент, доцент кафедры городского строительства и автомобильных дорог, Тамбовский государственный технический университет (ФГБОУ ВПО «ТГТУ»), 392032, г. Тамбов, ул. Мичуринская, д. 112, корпус Е; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 22-31

Дан анализ принципов оценки распространения в плоских помещениях шума, проникающего из соседних помещений через стены. Предложен метод расчета уровней звукового давления в помещениях с учетом закономерностей распространения в пространстве прямого звука от плоского источника шума (стены) и условий формирования отраженного звукового поля в плоских помещениях конечной и бесконечной длин. Метод обеспечивает требуемую при расчетах точность определения уровней звукового давления.

DOI: 10.22227/1997-0935.2014.9.22-31

Библиографический список
  1. Леденев В.И. Статистические энергетические методы расчета шумовых полей при проектировании производственных зданий. Тамбов : Изд-во Тамб. гос. техн. ун- та, 2001. 156 с.
  2. Антонов А.И., Жданов А.Е., Леденев В.И. Автоматизация расчета шумовых полей в производственных помещениях // Вестник Тамбовского государственного технического университета. 2004. Т. 10. № 1Б. С. 245-250.
  3. Гиясов Б.И., Матвеева И.В., Макаров А.М. Метод расчета шума в плоских помещениях с равномерно распределенными рассеивателями // Вестник МГСУ. 2014. № 2. С. 13-21.
  4. Antonov A.I., Ledenev V.I., Solomatin Ye.O. The combined method of calculation of noise conditions in industrial buildings of thermal power stations // Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture. 2012. No. 1. Pp. 7-16.
  5. Антонов А.И., Соломатин Е.О., Цева А.В. Метод расчета шума в длинных помещениях // Вестник МГСУ. 2013. № 1. С. 19-25.
  6. Антонов А.И., Леденев В.И., Соломатин Е.О., Гусев В.П. Методы расчета уровней прямого звука, излучаемого плоскими источниками шума в городской застройке // Жилищное строительство. 2013. № 6. С. 13-15.
  7. Picaut J., Simon L., D. Polack J. A mathematical model of diffuse sound field based on a diffusion equation // Acoustica. 1997. Vol. 83. No. 4. Pp. 614-621.
  8. Valeau V., Picaut J., Hodgson M. On the use of a diffusion equation for room-acoustic prediction // Journal of the Acoustical Society of America. 2006. Vol. 119. No. 3. Pp. 1504-1513.
  9. Valeau V., Hodgson M., Picaut J. A diffusion-based analogy for the prediction of sound fields in fitted rooms // Acta Acustica United with Acustica. 2007. Vol. 93. No. 1. Pp. 94-105.
  10. Billon A., Picaut J., Valeau V., Sakout A. Acoustic predictions in Industrial Spaces Using a Diffusion Model // Advances in Acoustics and Vibration. 2012. Article ID 260394. 9 p. Режим доступа: http://www.hindawi.com/journals/aav/2012/260394/. Дата обращения: 12.05.2014.
  11. Jing Y., Larsen E.W., Xiang N. One-dimensional transport equation models for sound energy propagation in long spaces: theory // Journal of the Acoustical Society of America. 2010. Vol. 127. No. 4. Pp. 2312-2322.
  12. Jing Y., Xiang N. A modified diffusion equation for room-acoustic predication // Journal of the Acoustical Society of America. 2007. Vol. 121. No. 6. Pp. 3284-3287.
  13. Picaut J., Valeau V., Billon A., Sakout A. Sound field modeling in architectural acoustics using a diffusion equation // Proceedings of the 20th International Conference on Noise. Honolulu, Hawaii, USA, 2006. Pp. 1-8.
  14. Осипов Г.Л., Юдин Е.Я., Хюбнер Г. Снижение шума в зданиях и жилых районах / под ред. Г.Л. Осипова, Е.Я. Юдина. М. : Стройиздат, 1987. 558 с.
  15. Воронков А.Ю., Жданов А.Е. О принципе ввода звуковой энергии в помещение при использовании интегро-интерполяционного метода расчета шумовых полей // Тр. ТГТУ : сб. науч. ст. мол. уч. и студ. Тамбов, 1999. Вып. 4. С. 116-118.

Скачать статью

ПРОЕКТИРОВАНИЕ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ ПО УСЛОВИЯМ И С УЧЕТОМ ЗАЩИТЫ ОТ ШУМА

Вестник МГСУ 12/2012
  • Гиясов Ботир Иминжонович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, заведующий кафедрой архитектурно-строительного проектирования, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Антонов Александр Иванович - Тамбовский государственный технический университет (ФГБОУ ВПО «ТГТУ») кандидат технических наук, доцент, доцент кафедры архитектуры и строительства зданий, Тамбовский государственный технический университет (ФГБОУ ВПО «ТГТУ»), 392032, г. Тамбов, ул. Мичуринская, д. 112, корп. Е, 8 (4752) 63-03-82, 63-04-39; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Матвеева Ирина Владимировна - Тамбовский государственный технический университет (ФГБОУ ВПО «ТГТУ») кандидат технических наук, доцент, доцент кафедры городского строительства и автомобильных дорог, Тамбовский государственный технический университет (ФГБОУ ВПО «ТГТУ»), 392032, г. Тамбов, ул. Мичуринская, д. 112, корпус Е; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 16 - 21

Рассмотрены принципы и приведены алгоритмы проектирования ограждающих конструкций зданий по условиям и с учетом защиты от шума. Описан программный комплекс, позволяющий выполнять многофакторный анализ вариантов по шумозащите на всех уровнях проектирования зданий.

DOI: 10.22227/1997-0935.2012.12.16 - 21

Библиографический список
  1. Горин В.А., Клименко В.В., Шнурникова Е.П. Изоляция ударного шума междуэтажны- ми перекрытиями с паркетными полами // Academia. Архитектура и строительство. 2010. № 3. С. 200-203.
  2. Кочкин А.А. Звукоизоляция слоистых вибродемпфированных элементов светопрозрач- ных ограждающих конструкций // Строительные материалы. 2012. № 6. С. 40-41.
  3. Кочкин А.А. Легкие звукоизолирующие ограждающие конструкции из элементом с вибродемпфирующими слоями // Известия Юго-западного государственного университета. № 5. Ч. 2. С. 152-156.
  4. Боганик А.Г. Эффективные конструкции для дополнительной звукоизоляции помеще- ний // Строительные материалы. 2004. № 10. С. 18-19.
  5. Кочкин А.А., Шашкова Л.Э. О повышении звукоизоляции ограждающих конструкций // Academia. Архитектура и строительство. 2010. № 3. С. 198-199.
  6. Кочкин А.А. О проектировании звукоизоляции легких ограждений с промежуточным демпфирующим слоем // Academia. Архитектура и строительство. 2010. № 3. С. 191-193.
  7. Старцева О.В., Овсянников С.Н. Исследование звукоизоляции однослойных и двух- слойных перегородок // Жилищное строительство. 2012. № 6. С. 43-46.
  8. Гребнев П.А., Монич Д.В. Исследование звукоизолирующих свойств многослойных ограждений с жестким заполнителем // Жилищное строительство. 2012. № 6. С. 50-51.
  9. Леденев В.И. Статистические энергетические методы расчета шумовых полей при проектировании производственных зданий. Тамбов : Изд-во Тамб. гос. техн. ун-та, 2000. 156 с.
  10. Леденев В.И., Воронков А.Ю., Жданов А.Е. Метод оценки шумового режима квартир // Жилищное строительство. 2004. № 11. С. 15-17.

Cкачать на языке оригинала

Тепловой режим ограждающих конструкций высотных зданий

Вестник МГСУ 8/2018 Том 13
  • Мусорина Татьяна Александровна - Санкт-Петербургский политехнический университет Петра Великого (СПбПУ) аспирант кафедры гидравлики и прочности, Инженерно-строительный институт, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), 195251, г. Санкт-Петербург, ул. Политехническая, д. 29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Гамаюнова Ольга Сергеевна - Санкт-Петербургский политехнический университет Петра Великого (СПбПУ) старший преподаватель кафедры строительства уникальных зданий и сооружений, Инженерно-строительный институт, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), 195251, г. Санкт-Петербург, ул. Политехническая, д. 29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Петриченко Михаил Романович - Санкт-Петербургский политехнический университет Петра Великого (СПбПУ) доктор технических наук, профессор, заведующий кафедрой гидравлики и прочности, Инженерно-строительный институт, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), 195251, г. Санкт-Петербург, ул. Политехническая, д. 29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 935-943

Предмет исследования: основные потери тепла происходят через оболочку здания. Исследуются ограждающие конструкции с различной теплопроводностью. Проблема накопления влаги в стене достаточно актуальна. Одна из главных проблем в строительстве это экономия на строительных материалах и неправильное проектирование ограждающих конструкций, что в свою очередь приводит к нарушению тепловлажностного режима в стене. Представлен один из методов решения данного вопроса. Цели: описание тепловлажностного режима в стеновом ограждении высотных зданий, анализ зависимости между теплофизическими характеристиками. Материалы и методы: распределение температуры в слоях анализируется на основе структуры, состоящей из 10 слоев; толщина слоя - 0,05 м. Использовались материалы с различной теплопроводностью. Каждый последующий слой отличался по теплопроводности от предыдущего на 0,01. Далее данные слои перестанавливались. Расчет влажностного режима включает нахождение распределения температуры по толщине ограждения при заданной температуре наружного воздуха. Фактором качества распределения температуры является максимальная средняя температура. Данные исследования проводятся в области энергоэффективности. Результаты: чем выше средняя температура стены, тем ниже температура воздуха, она отличается от температуры стенки. Кроме того, чем выше средняя температура стены, тем суше поверхность внутри стены. Однако влага накапливается на поверхности внутри помещения. Работоспособность многослойных ограждающих конструкций определяется температурным распределением и распределением влаги в слоях. Выводы: перемещение влаги через ограждение происходит за счет разности парциальных давлений водяного пара, содержащегося во внутреннем и наружном воздухе. Слой с минимальной теплопроводимостью должен располагаться на внешней поверхности стены в многоэтажном здании. Максимальное изменение амплитуды колебаний температуры наблюдается в слое, прилегающем к поверхности со стороны периодического теплового воздействия. Также учитывается, что процесс теплоусвоения оказывает большое влияние на изменение температур в толще стенового ограждения в наибольшей мере в пределах слоя резких колебаний (наружный слой). Центральная часть стены (несущий слой) будет наиболее сухой. Данным расчетам удовлетворяет конструкция навесного вентилируемого фасада.

DOI: 10.22227/1997-0935.2018.8.935-943

Библиографический список
  1. de Gracia A., Castell A., Fernández C., Cabeza L.F. A simple model to predict the thermal performance of a ventilated facade with phase change materials // Energy and Buildings. 2015. No. 93. Pp. 137-142. DOI: 10.1016/j.enbuild.2015.01.069.
  2. Корниенко С.В., Ватин Н.И., Петриченко М.Р., Горшков А.С. Оценка влажностного режима многослойной стеновой конструкции в годовом цикле // Строительство уникальных зданий и сооружений. 2015. № 6 (33). С. 19-33.
  3. Minea A.A. Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids // International Journal of Heat and Mass Transfer. 2014. Vol. 68. Pp. 78-84. DOI:10.1016/j.ijheatmasstransfer.2013.09.018.
  4. Корниенко С.В. Потенциал влажности для определения влажностного состояния материалов наружных ограждений в неизотермических условиях // Строительные материалы. 2006. № 4. С. 88-89.
  5. Gabitova G., Zaborova D., Barinov S. Experimental Determination of Permeability Coefficient // Advances in Intelligent Systems and Computing. 2017. Vol. 692. Pp. 830-836. DOI: 10.1007/978-3-319-70987-1_88.
  6. Туснина О.А., Емельянов А.А., Туснина В.М. Теплотехнические свойства различных конструктивных систем навесных вентилируемых фасадов // Инженерно-строительный журнал. 2013. № 8 (43). С. 54-63.
  7. Явтушенко Е.Б., Петроченко М.В. Диффузорная конструкция навесного вентилируемого фасада // Инженерно-строительный журнал. 2013. № 8 (43). С. 38-45. DOI: 10.5862/MCE.43.6.
  8. Заборова Д.Д., Куколев М.И., Мусорина Т.А., Петриченко М.Р. Математическая модель энергетической эффективности слоистых строительных ограждений // Научно-технические ведомости СПбПУ. 2016. № 4 (254). С. 28-33.
  9. Куколев М.И., Петриченко М.Р. Определение температурного поля стенки при периодическом тепловом воздействии // Двигатель - 2007 : сб. науч. тр. по мат. Междунар. конф., посвящ. 100-летию школы двигателестроения МГТУ им. Н.Э. Баумана. М. : МГСУ, 2007. С. 71-75.
  10. Vatin N., Gamayunova O. Choosing the Right Type of Windows to Improve Energy Efficiency of Buildings // Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 972-976. DOI:10.4028/www.scientific.net/amm.633-634.972.
  11. Korniyenko S.V., Vatin N.I., Gorshkov A.S. Thermophysical field testing of residential buildings made of autoclaved aerated concrete blocks // Magazine of Civil Engineering. 2016. Vol. 64. Issue 4. Pp. 10-25. DOI:10.5862/mce.64.2.
  12. Корниенко С.В. Расчетно-экспериментальный контроль энергосбережения зданий // Инженерно-строительный журнал. 2013. № 8 (43). С. 24-30. DOI: 10.5862/MCE.43.4.
  13. Ватин Н.И., Куколев М.И. Тепловые накопители в строительстве: учет применения нескольких теплоаккумулирующих материалов // Инженерные системы. АВОК - Северо-Запад. 2016. № 1. С. 50-51.
  14. Musorina T., Olshevskyi V., Ostrovaia A., Statsenko E. Experimental assessment of moisture transfer in the vertical ventilated channel // MATEC Web of Conferences. 2016. Vol. 73. Pp. 02002.
  15. Петриченко М.Р., Петриченко Р.М., Канищев А.Б., Шабанов А.Ю. Трение и теплопередача в поршневых кольцах двигателей внутреннего сгорания. Л., 1990, 248 с.
  16. Гладких А.А., Горшков А.С. Влияние растворных швов кладки на параметры теплотехнической однородности стен из газобетона // Инженерно-строительный журнал. 2010. № 3. С. 39-42.
  17. Vatin N., Gamayunova O. Energy saving at home // Applied Mechanics and Materials. 2014. Vol. 672-674. Pp. 550-553. DOI:10.4028/www.scientific.net/amm.672-674.550.
  18. Haase M., Marques da Silva F., Amato A. Simulation of ventilated facades in hot and humid climates // Energy and Buildings. 2009. Vol. 41. Issue 4. Pp. 361-373. DOI:10.1016/j.enbuild.2008.11.008.
  19. Гагарин В.Г., Козлов В.В. Теоретические предпосылки расчета приведенного сопротивления теплопередаче ограждающих конструкций // Строительные материалы. 2010. № 12. С. 4-12.
  20. Korniyenko S. Evaluation of thermal performance of residential building envelope // Procedia Engineering. 2015. Vol. 117. Pp. 191-196. DOI:10.1016/j.proeng.2015.08.140.
  21. Balocco C. A simple model to study ventilated facades energy performance // Energy and Buildings. 2002. Vol. 34. Issue 5. Pp. 469-475. DOI:10.1016/s0378-7788(01)00130-x.
  22. Minea A.A. Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids // International Journal of Heat and Mass Transfer. 2014. Vol. 68. Pp. 78-84. DOI:10.1016/j.ijheatmasstransfer.2013.09.018.
  23. Zhang L. Production of bricks from waste materials - A review // Construction and Building Materials. 2013. Vol. 47. Pp. 643-655. DOI:10.1016/j.conbuildmat.2013.05.043.
  24. Zajacs A., Zemitis J., Tihomirova K., Borodinecs A. Concept of smart city: first experience from city of Riga // Journal of Sustainable Architecture and Civil Engineering. 2014. Vol. 7. Issue 2. Pp. 54-59. DOI:10.5755/j01.sace.7.2.6932.

Cкачать на языке оригинала

Организационно-технологический потенциал ограждающих конструкций многоэтажных жилых зданий

Вестник МГСУ 4/2015
  • Лапидус Азарий Абрамович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) профессор, доктор технических наук, заведующий кафедрой технологии и организации строительного производства, Заслуженный строитель РФ, лауреат премии Правительства РФ в области науки и техники, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Говоруха Петр Анатольевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») ассистент кафедры технологии и организации строительного производства, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26, 8 (495) 287-49-14 вн. 31-25, 31-06, 31-07; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 143-149

Обоснована необходимость формирования инструмента, позволяющего выбирать оптимальное решение с точки зрения технологии и организации строительных работ при устройстве ограждающих конструкций. Предложено использовать в качестве данного инструмента организационно-технологический потенциал ограждающих конструкций как дискретный показатель выбранного организационно-технологического решения. Предложен концептуальный математический аппарат получения числового отображения представленного организационно-технологического решения.

DOI: 10.22227/1997-0935.2015.4.143-149

Библиографический список
  1. Бережный А.Ю., Сайдаев Х.Л.-А. Использование комплексного показателя экологической нагрузки при выборе подрядной организации // Техническое регулирование. Строительство, проектирование и изыскания. 2012. № 1. C. 26-27.
  2. Бессонов А.К., Верстина Н.Г., Кулаков Ю.Н. Инновационный потенциал строительных предприятий: формирование и использование в процессе инновационного развития. М. : Изд-во АСВ, 2009. 166 с.
  3. Лапидус А.А. Потенциал эффективности организационно-технологических решений строительного объекта // Вестник МГСУ. 2014. № 1. С. 175-180.
  4. Лапидус А.А., Бережный А.Ю. Математическая модель оценки обобщенного показателя экологической нагрузки при возведении строительного объекта // Вестник МГСУ. 2012. № 3. С. 149-153.
  5. Теличенко В.И. Пути развития инженерного потенциала на примере строительной отрасли // Alma Mater. Вестник высшей школы. 2011. № 8. С. 7-11.
  6. Бережный А.Ю. Системотехника строительства как теоретическая основа для оценки обобщенного показателя экологической нагрузки при возведении строительного объекта // Техническое регулирование. Строительство, проектирование и изыскания. 2011. № 10 (11). C. 50-52.
  7. Гусаков А.А., Богомолов Ю.М., Брехман А.И., Вагонян Г.А. Системотехника строительства / под ред. А.А. Гусакова. 2-е изд., доп., перераб. М. : Изд-во АСВ, 2004. 320 с.
  8. Маругин В.М., Азгальдов Г.Г., Белов О.Е. Квалиметрическая экспертиза строительных объектов. СПб. : Политехника, 2008. 527 с.
  9. Сайдаев Х.Л. Планирование эксперимента при исследовании экологического параметра в системе оценки потенциала генеральной подрядной организации // Техническое регулирование. Строительство, проектирование и изыскания. 2012. № 9. С. 48-50.
  10. Бережный А.Ю. Формирование информационной базы данных для системы оценки экологической эффективности организационно-технологических решений в процессе строительного производства // Техническое регулирование. Строительство, проектирование и изыскания. 2012. № 1. C. 42-43.

Скачать статью

Сравнительные расчетные исследования энергоэффективности существующих и вновь разработанных материалов и конструкций на основе конечноэлементного моделирования трехмерных задач теплопроводности

Вестник МГСУ 3/2013
  • Белостоцкий Александр Михайлович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») доктор технических наук, профессор кафедры информатики и прикладной математики, директор научно-обра- зовательного центра компьютерного моделирования, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Щербина Сергей Викторович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») инженер научно-образовательного центра компьютерного моделирования, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 212-219

Выполнен сравнительный анализ энергоэффективности существующей и вновь разработанной ограждающей конструкции. В качестве параметра энергоэффективности принимаются плотности и интегралы плотности (по характерным линиям) теплового потока, в качестве инструмента расчетных исследований — конечноэлементное моделирование стационарных задач теплопроводности по верифицированному программному комплексу ANSYS.

DOI: 10.22227/1997-0935.2013.3.212-219

Библиографический список
  1. Дмитриев А.Н. Энергосберегающие ограждающие конструкции гражданских зданий с эффективными утеплителями : дисс. … д-ра техн. наук. М., 1999.
  2. Хуторной А.Н. Теплофизическое обоснование новых неоднородных наружных стен зданий и прогнозирование их теплозащитных свойств : автореф. дисс. … д-ра техн. наук. Тюмень, 2009.
  3. Кауфман Б.Н. Теплопроводность строительных материалов. М. : Из-во литературы по строительству и архитектуре, 1955. 159 с.
  4. Лыков А.В. Теория теплопроводности. М. : Высш. шк., 1967. 599 с.
  5. Румянцев А.В. Метод конечных элементов в задачах теплопроводности. 3-е изд., перераб. Калининград, 2010. 95 с.
  6. Зенкевич О., Чанг И. Метод конечных элементов в теории сооружений и в механике сплошных сред. М. : Недра, 1974.
  7. Верификационный отчет по программному комплексу ANSYS Mechanical / А.М. Белостоцкий, С.И. Дубинский, А.А. Аул, А.И. Нагибович, И.Н. Афанасьева, О.А. Козырев, А.С. Павлов. 4 т. М. : ЗАО НИЦ СтаДиО, НОЦ КМ МГСУ, 2009.
  8. Structural Analysis Guide, Documentation for ANSYS, Release 12.1. 2010.
  9. Thermal Analysis Guide, Documentation for ANSYS, Release 12.1. 2010.
  10. СНиП 23-02—2003. Тепловая защита зданий.

Скачать статью

Нормирование сопротивления теплопередаче наружных ограждений зданий по условию теплового комфорта в помещении

Вестник МГСУ 2/2016
  • Перехоженцев Анатолий Георгиевич - Волгоградский государственный архитектурно-строительный университет (ВолгГАСУ) доктор технических наук, заслуженный работник высшей школы РФ, член Союза архитекторов России, профессор, заведующий кафедрой архитектуры зданий и сооружений, Волгоградский государственный архитектурно-строительный университет (ВолгГАСУ), 400074, г. Волгоград, ул. Академическая, д. 1; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 173-185

Рассмотрена концепция нормирования сопротивления теплопередаче наружных ограждений зданий, в которой определяющим фактором является температура внутренней поверхности ограждающей конструкции, обеспечивающая комфортные температурные условия в помещениях.

DOI: 10.22227/1997-0935.2016.2.173-185

Библиографический список
  1. Гагарин В.Г. О недостаточной обоснованности повышенных требований к теплозащите наружных стен зданий // Проблемы строительной теплофизики систем микроклимата и энергосбережения в зданиях : сб. докл. 3-й науч.-практ. конф. (23-25 апреля 1998 г.) / под ред. В.Г. Гагарина. М. : ГАСНТИ, 1998. С. 69-94.
  2. Бродач М.М. VIIKKI - новый взгляд на энергосбережение // АВОК : Вентиляция, отопление, кондиционирование воздуха, теплоснабжение и строительная теплофизика. 2002. № 6. С. 14-20.
  3. Прохоров В.И. Облик энергосбережения. Актуальные проблемы строительной теплофизики // Академические чтения : сб. докл. 7-й науч.-практ. конф. (18-20 апреля 2002 г.). М., 2002. С. 73-93.
  4. Уваров А.В., Ставцев Д.А., Кузнецов Д.И. Проблемы экономии тепла в системе ЖКХ // Строительная физика в XXI веке : материалы науч.-техн. конф. М. : НИИСФ РААСН, 2006. С. 212-216.
  5. Горшков А.С., Ливчак В.И. История, эволюция и развитие нормативных требований к ограждающим конструкциям // Строительство уникальных зданий и сооружений. 2015. № 3 (30). С. 7-37.
  6. Энергетическая стратегия России на период до 2020 года. М. : ГУИЭС ; Энергия, 2003. 135 с.
  7. Банхиди Л. Тепловой микроклимат помещений : расчет комфортных параметров по теплоощущениям человека / пер. с венг. В.М. Беляева ; под ред. В.И. Прохорова, А.Л. Наумова. М. : Стройиздат, 1981. 248 с.
  8. Fanger P.O. Thermal Comfort. McGrowHill, 1970. 244 р.
  9. СанПиН 2.1.2.2645-10. Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях. Санитарно-эпидемиологические правила и нормативы.
  10. Andrskevicius R., Bielinskis F. Investigation of temperature variations in heated rooms // Pap. of 4th conf. of VGTU. 2000. Pp. 215-222.
  11. Keller B., Magyari E. A simple calculation method of general validity for the design-parameters of a room/building, minimizing its energy and power demand for heating and cooling in a given climate. Zurich, 1998. 57 p.
  12. Самарин О.Д. Теплофизика. Энергосбережение. Энергоэффективность. М. : Изд-во АСВ, 2009. 292 с. (Библиотека научных проектов и разработок МГСУ)
  13. Перехоженцев А.Г. Методика расчета распределения температуры в многослойных ограждающих конструкциях зданий с учетом влияния инфильтрации холодного воздуха // Теоретические основы теплоснабжения и вентиляции : материалы 2-ой Международной науч.-техн. конф. М. : МГСУ, 2007.
  14. Jaraminieme E., Juodis E. The discrepancy between design heat demand and actual heat consumption due to air infiltration // Pap. of Conf. of VGTU. 2008. Vol. II. Pp. 804-809.
  15. Жуков А.Н. Влияние климатических особенностей Волгоградской области на температурный режим совмещенных покрытий зданий // Технические науки - от теории к практике : материалы ХII Междунар. науч.-практ. конф. (30 июля 2012 г.). Новосибирск, 2012. С. 67-70.
  16. Фокин К.Ф. Строительная теплотехника ограждающих частей зданий. 5-е изд., пересмотр. М. : АВОК-Пресс, 2006. 250 с. (Техническая библиотека НП «АВОК»)
  17. Romanauskas R. Efficient use of rotary heat exchangers // Pap. of REHVA’S General Assembly. 2004. Pp. 360-366.
  18. ГОСТ 30494-96. Здания жилые и общественные. Параметры микроклимата в помещениях. М. : МНТКС, 1996. 23 с.
  19. Блази В. Справочник проектировщика. Строительная физика / пер. с нем. под ред. и с доп. А.К. Соловьева. М. : Техносфера, 2005. 535 с. (Мир строительства)
  20. Petras D., Matej P. The optimization of the heat pump operation in low-temperature heating systems // Pap. of REHVA’S General Assembly. 2004. Pp. 346-351.
  21. Беляев Н.В., Фурсов В.В. О разнообразии причин образования повреждений несущих ограждающих конструкций // Вестник СибАДИ. 2013. № 5 (33). С. 45-51.
  22. Энергетика и энергосбережение: положение на сегодняшний день и пути дальнейшего развития // Энергоэффективность: опыт, проблемы, решения. 2007. № 1-2. C. 79-94.

Скачать статью

Особенности расчета стеновых панелей с монолитной связью слоев на стадиях монтажа, транспортирования и эксплуатации

Вестник МГСУ 3/2019 Том 14
  • Король Елена Анатольевна - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор, заведующая кафедрой жилищно-коммунального комплекса, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Берлинова Марина Николаевна - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры жилищно-коммунального комплекса, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 367-375

Введение. При возведении жилых или общественных зданий различных пространственных конструктивных систем (монолитных, сборно-монолитных, сборных и т.п.) принято проектировать самонесущие наружные стены в пределах этажа. Разработка и применение в современном строительстве новых конструктивно-технологических решений многослойных стеновых панелей индустриального изготовления актуализирует вопрос совершенствования методов их расчета на различных стадиях работы и при различных видах и сочетаниях нагрузок и воздействий. Однако на практике возможно бесконечное разнообразие уровней нагружения и, значит, потребовалось бы такое же многообразие упомянутых подходов к проектированию. Очевидно, что для инженерных расчетов это неприемлемо, в связи с этим возникает необходимость обеспечения монолитной матричной связи слоев как технологически, так и конструктивно, что может обеспечить обобщенный подход к расчету многослойных ограждающих конструкций в соответствии с действующими нормами проектирования. Материалы и методы. Приводится описание конструктивных особенностей многослойной стеновой панели из конструкционного бетона со средним слоем из бетона низкой теплопроводности и монолитной связью слоев, влияющих на построение расчетной модели и методики расчета на стадиях транспортирования, монтажа и эксплуатации. Результаты. Проанализированы расчетные параметры таких конструкций, обеспечивающие их конкурентные преимущества по прочностным и эксплуатационным показателям по сравнению с традиционными ограждающими конструкциями массового применения. Выводы. Как показали исследования, при сочетаниях нагрузок силового и не силового характера, напряжения в рассматриваемой конструкции на всех стадиях работы не превышают допустимых значений, что подтверждает перспективы использования многослойных панелей с монолитной связью слоев при возведении каркасно-панельных зданий различного назначения.

DOI: 10.22227/1997-0935.2019.3.367-375

Библиографический список
  1. Рахманов В.А. Полистиролбетон системы «Юникон» - энергоэффективный материал XXI века. М., 2017. URL: https://vniizhbeton.ru/
  2. Fediuk R.S., Smoliakov A.K., Timokhin R.A., Stoyushko N.Y., Gladkova N.A. Fibrous concrete with reduced permeability to protect the home against the fumes of expanded polystyrene // IOP Conference Series: Earth and Environmental Science. 2017. Vol. 66. P. 012026. DOI: 10.1088/1755-1315/66/1/012026
  3. Sayadi A.A., Tapia J.U., Neitzert T.R., Clifton G.C. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete // Construction and Building Materials. 2016. Vol. 112. Pp. 716-724. DOI: 10.1016/j.conbuildmat.2016.02.218
  4. Babu K.G., Babu D.S. Behaviour of lightweight expanded polystyrene concrete containing silica fume // Cement and Concrete Research. 2003. Vol. 33. Issue 5. Pp. 755-762. DOI: 10.1016/s0008-8846(02)01055-4
  5. Рахманов В.А. Расчетный метод определения состава полистиролбетона с требуемой прочностью и минимальной плотностью // Промышленное и гражданское строительство. 2009. № 7. С. 45-47.
  6. Kovács K. Polisztirol betonok tartóssága // Durability of concrete structures - Proceedings. Budapest, 2008. Pp. 257-278.
  7. Lander V.Ph., Shauman Z. Microstructure research of contact zone aggregatehardened cement binder in filtering concretes // The 111 International Simposium on Silicate Chemestry. Brno, 2005.
  8. Могушков Р.Т., Бойков И.В., Скориков Р.Е. Применение полистиролбетона в строительстве // Развитие технических наук в современном мире : сб. науч. тр. по итогам Междунар. науч.-практ. конф. Воронеж, 8 декабря 2015. 2015. № 2. С. 135-138. URL: http://izron.ru/conference/atr_year-2019/atr_month-mart/
  9. Korol E., Berlinov M., Berlinova M. The long term stability of multilayer walling structures // MATEC Web of Conferences. 2017. Vol. 106. P. 04006. DOI: 10.1051/matecconf/201710604006
  10. Король Е.А., Берлинова М.Н. Оценка прочности многослойных плит покрытий и перекрытий общественных зданий // Интеграция, партнерство и инновации в строительной науке и образовании : сб. мат. Междунар. науч. конф. М. : НИУ МГСУ, 2017. С. 839-842.
  11. Король Е.А., Харькин Ю.А., Быков Е.Н. Экспериментальные исследования влияния климатических воздействий на монолитную связь бетонных слоев различной прочности в многослойных конструкциях // Вестник МГСУ. 2010. № 3. С. 164-169.
  12. Баженов Ю.М., Король Е.А., Ерофеев В.Т., Митина Е.А. Ограждающие конструкции с использованием бетонов низкой теплопроводности (основы теории, методы расчета и технологическое проектирование). М. : Изд-во АСВ, 2008. 320 с.
  13. Король Е.А., Харькин Ю.А. К вопросу о выборе программного комплекса для моделирования напряженно-деформированного состояния трехслойных железобетонных элементов и конструкций с монолитной связью слоев // Вестник МГСУ. 2010. № 3. С. 156-163.
  14. Korol E.A., Berlinov M.V., Berlinova M.N. Kinetics of the strength of concrete in constructions // Procedia Engineering. 2016. Vol. 153. Pp. 292-297. DOI: 10.1016/j.proeng.2016.08.118
  15. Trussoni M., Hays C.D., Zollo R.F. Fracture properties of concrete containing expanded polystyrene aggregate replacement // ACI Materials Journal. 2013. Vol. 110. Issue 5. Pp. 549-558. DOI: 10.14359/51685906
  16. Chen B., Liu J. Properties of lightweight expanded polystyrene concrete reinforced with steel fiber // Cement and Concrete Research. 2004. Vol. 34. Issue 7. Pp. 1259-1263. DOI: 10.1016/j.cemconres.2003.12.014
  17. Yue Z., Xiao H. Generalized Kelvin solution based boundary element method for crack problems in multilayered solids // Engineering Analysis with Boundary Elements. 2002. Vol. 26. Issue 8. Pp. 691-705. DOI: 10.1016/s0955-7997(02)00038-3
  18. Korol E., Berlinova M. Calculation of multilayer enclosing structures with middle layer of polystyrene concrete // MATEC Web of Conferences. 2018. Vol. 193. P. 3020. DOI: 10.1051/matecconf/201819303020
  19. Cherednikov V., Voskobiinyk O., Cherednikova O. Evaluation of the warping model for analysis of polystyrene concrete slabs with profiled steel sheeting // Periodica Polytechnica Civil Engineering. 2017. Vol. 61. No. 3. Pp. 483-490. DOI: 10.3311/PPci.8717
  20. Пугач Е.М., Король О.А. Экспериментальные исследования работы трехслойных конструкций со средним слоем из бетона низкой теплопроводности в нестационарном тепловлажностном режиме // Вестник МГСУ. 2011. № 3-2. С. 154.
  21. 1Рекомендации по расчету и проектированию ограждающих конструкций с применением монолитного теплоизоляционного полистиролбетона с высокопоризованной и пластифицированной матрицей. М. : Москомархитектура, 2006

Скачать статью

Результаты 1 - 7 из 7