ЛИТЫЕ БЕТОНЫ С ИСПОЛЬЗОВАНИЕМ ОТХОДОВ МЕДЕПЛАВИЛЬНОГО ПРОИЗВОДСТВА И НАНОКРЕМНЕЗЕМА

Вестник МГСУ 9/2017 Том 12
  • Кравцов Алексей Владимирович - Костромская государственная сельскохозяйственная академия (КГСХА) аспирант кафедры технологии, организации и экономики строительства, Костромская государственная сельскохозяйственная академия (КГСХА), 156530, Костромская обл., пос. Караваево, Учебный городок, д. 34.
  • Цыбакин Сергей Валерьевич - Костромская государственная сельскохозяйственная академия (КГСХА) кандидат технических наук, доцент, декан архитектурно-строительного факультета, Костромская государственная сельскохозяйственная академия (КГСХА), 156530, Костромская обл., пос. Караваево, Учебный городок, д. 34.
  • Евсеева Татьяна Михайловна - Костромская государственная сельскохозяйственная академия (КГСХА) магистрант, Костромская государственная сельскохозяйственная академия (КГСХА), 156530, Костромская обл., пос. Караваево, Учебный городок, д. 34.
  • Соболев Константин Геннадьевич - Университет Висконсин-Милуоки, США, 53201, Висконсин, Милуоки, п/я 784 кандидат технических наук, профессор, заведующий кафедрой строительства и охраны окружающей, Университет Висконсин-Милуоки, США, 53201, Висконсин, Милуоки, п/я 784, США, 53201, Висконсин, Милуоки, п/я 784.
  • Потапов Вадим Владимирович - Научно-исследовательский геотехнологический центр Дальневосточного отделения Российской академии наук (НИГТЦ ДВО РАН) доктор технических наук, профессор, главный научный сотрудник, Научно-исследовательский геотехнологический центр Дальневосточного отделения Российской академии наук (НИГТЦ ДВО РАН), 683002, г. Петропавловск-Камчатский, Северо-Восточное шоссе, д. 30.

Страницы 1010-1018

Предмет исследования: применение в технологии литых и самоуплотняющихся бетонов минеральных микронаполнителей на основе техногенных отходов цветной металлургии совместно с нанокремнеземом. Результатами предыдущих опытов была доказана эффективность использования молотого медеплавильного шлака в технологии литых бетонных смесей. Однако отсутствуют результаты исследования совместной работы данного микронаполнителя и нанодобавки в пластичных бетонных смесях. Цель исследования: определение оптимального диапазона использования нанокремнезема в литых бетонных смесях со шлаковым микронаполнителем с точки зрения сохранения пластичности бетонной смеси и увеличения прочности бетона. Материалы и методы: определение пластичности бетонной смеси осуществлялось по расплыву малого конуса на встряхивающем столике по методике, разработанной в НИУ МГСУ. Проверка прочности бетонных образцов осуществлялась в соответствии с ГОСТ 10180-2012. Статистическая обработка полученных результатов произведена методом наименьших квадратов. Результаты: построены графики зависимости пластичности бетонной смеси и прочности литого бетона с молотым медеплавильным шлаком от дозировки нанодобавки, а также влияния дозировки суперпластификатора на указанные свойства при высоких значениях использования нанокремнезема. Выведены уравнения регрессии для всех установленных зависимостей. Выводы: установлено, что введение нанокремнезема в дозировке 0,1…0,5 % от массы цемента положительно сказывается на прочности бетона при совместном использовании с медеплавильным шлаком и суперпластификатором. Разработанные составы литых мелкозернистых бетонных смесей могут использоваться в густоармированных бетонных конструкциях, имеющих высокие требования по крупности заполнителей и пластичности бетонной смеси.

DOI: 10.22227/1997-0935.2017.9.1010-1018

Библиографический список
  1. Касторных Л.И. Добавки в бетоны и строительные растворы. Ростов н/Д : Феникс, 2007. 221 с.
  2. Гудим Ю.А., Голубев А.А. Эффективные способы утилизации отходов металлургического производства Урала // Экология и промышленность России. 2008. № 12. С. 4-8.
  3. Худяков И.Ф., Кляйн С.Э., Агеев Н.Г. Металлургия меди, никеля, сопутствующих элементов и проектирование цехов. М. : Металлургия, 1993. 431 с.
  4. Купряков Ю.П. Шахтная плавка вторичного сырья цветных металлов. М. : ЦНИИцветмет экономики и информации, 1995. 164 с.
  5. Шаповалов Н.А., Загороднюк Л.Х., Тикунова И.В. и др. Шлаки металлургического производства - эффективное сырье для получения сухих строительных смесей // Фундаментальные исследования. 2013. № 1. С. 167-172.
  6. Кравцов А.В., Цыбакин С.В., Виноградова Е.А., Бородина Л.М. Бетоны с органоминеральной добавкой на основе тонкомолотого шлака медеплавильного производства // Вестник МГСУ. 2016. № 2. С. 86-97.
  7. Баженов Ю.М. Технология бетона. М. : Изд-во АСВ, 2002. 500 с.
  8. Баженов Ю.М. Пути развития строительного материаловедения: новые бетоны // Технологии бетонов. 2012. № 3-4 (68-69). С. 39-42.
  9. Гусев Б.В., Фаликман В.Р. Бетон и железобетон в эпоху устойчивого развития // Промышленное и гражданское строительство. 2016. № 2. С. 30-38.
  10. Баженова С.И., Алимов Л.А. Высококачественные бетоны с использованием отходов промышленности // Вестник МГСУ. 2010. № 1. С. 226-230.
  11. Саламанова М.Ш., Сайдумов М.С., Муртазаева Т.С., Хубаев М.С. Высококачественные модифицированные бетоны на основе минеральных добавок и суперпластификаторов различной природы // Инновации и инвестиции. 2015. № 8. С. 163-166.
  12. Ларсен О.А., Дятлов А.К. Повышение эффективности мелкозернистых бетонов добавками поликарбоксилатных пластификаторов для монолитного домостроения // Технологии бетонов. 2013. № 10 (87). С. 14-15.
  13. Пономарев А.Н. Высококачественные бетоны. Анализ возможностей и практика использования методов нанотехнологии // Инженерно-строительный журнал. 2009. № 6. С. 25-33.
  14. Калашников В.И. Высокопрочные самоуплотняющиеся мелкозернистые жаростойкие бетоны. Пенза : Приволжский Дом знаний, 2015. 148 с.
  15. Фаликман В.Р., Соболев К.Г. «Простор за пределом», или как натотехнологии могут изменить мир бетона, ч. 1 // Нанотехнологии в строительстве: научный интернет-журнал. 2010. № 6. С. 17-31.
  16. Соболев К. Современные достижения нанотехнологии в области цемента и бетона // Цемент и его применение. 2016. № 4. С. 96-102.
  17. Баженов Ю.М., Королев Е.В., Лукутцова Н.П. и др. Высококачественные декоративные мелкозернистые бетоны, модифицированные наночастицами диоксида титана // Вестник МГСУ. 2012. № 6. С. 73-78.
  18. Гончарова Н.С., Перцев В.Т., Власов В.В., Рубаков О.Б. Высококачественные бетоны на основе местных сырьевых материалов, модифицированных нанотрубками // Научный журнал строительства и архитектуры. 2012. № 2. С. 46-54.
  19. Баженова С.И. Высококачественные бетоны на наномодификаторах техногенного происхождения // Вестник МГСУ. 2011. № 3-2. С. 172-175.
  20. Потапов В., Ефименко Ю., Михайлова Н. и др. Применение нанокремнезема для повышения прочности бетона // Наноиндустрия. 2014. № 7 (53). С. 64-69.
  21. Kuznetsova E.F., Sobolev G.M., Sobolev K. Self-Consolidating Green Concrete Based on Metakaolin and Aggregate Fines // Materials Research Society Proceedings. 2014. Vol. 1611. Pp. 75-80.
  22. Nanotechnology and Nanoengineering of Construction Materials // Nanotechnology in Construction: Proceedings of NICOM5 / Sobolev K., Shah S.P. eds. Springer International Publishing, 2015. Pp. 3-13.

Скачать статью

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЛИТОГО МЕЛКОЗЕРНИСТОГО БЕТОНА С ТЕХНОГЕННЫМИ ОТХОДАМИ МЕДЕПЛАВИЛЬНОГО ПРОИЗВОДСТВА

Вестник МГСУ 10/2017 Том 12
  • Кравцов Алексей Владимирович - Костромская государственная сельскохозяйственная академия (КГСХА) аспирант кафедры технологии, организации и экономики строительства, Костромская государственная сельскохозяйственная академия (КГСХА), 156530, Костромская обл., пос. Караваево, Учебный городок, д. 34.
  • Цыбакин Сергей Валерьевич - Костромская государственная сельскохозяйственная академия (КГСХА) кандидат технических наук, доцент, декан архитектурно-строительного факультета, Костромская государственная сельскохозяйственная академия (КГСХА), 156530, Костромская обл., пос. Караваево, Учебный городок, д. 34.
  • Кузнецова Екатерина Федоровна - Костромская государственная сельскохозяйственная академия (КГСХА) кандидат технических наук, доцент, доцент кафедры технологии, организации и экономики строительства, Костромская государственная сельскохозяйственная академия (КГСХА), 156530, Костромская обл., пос. Караваево, Учебный городок, д. 34.
  • Евсеева Татьяна Михайловна - Костромская государственная сельскохозяйственная академия (КГСХА) магистрант, Костромская государственная сельскохозяйственная академия (КГСХА), 156530, Костромская обл., пос. Караваево, Учебный городок, д. 34.

Страницы 1132-1144

Предмет исследования: применение в технологии литых и самоуплотняющихся бетонов минеральных микронаполнителей на основе техногенных отходов цветной металлургии. Доказано, что медеплавильный гранулированный шлак можно использовать при помоле общестроительных цементов в качестве минеральной добавки до 30 % без существенного снижения активности цементов. Однако отсутствуют результаты комплексного исследования влияния шлака на пластичные бетонные смеси. Цель исследования: определение математической зависимости влияния медеплавильного шлака на прочность бетона на сжатие и плотность через 28 сут твердения в нормальных условиях методом математического планирования эксперимента, статистическая обработка результатов, проверка адекватности разработанной модели. Материалы и методы: математическое планирование эксперимента осуществлялось в виде полного четырехфакторного эксперимента с использованием центрального композиционного ротатабельного планирования. Математическая модель выбрана в виде полинома второй степени с использованием четырех факторов функции отклика. Результаты: построена четырехфакторная математическая модель прочности бетона в марочном возрасте и плотности, выведено уравнение регрессии зависимости функции прочности через 28 сут и плотности от концентрации цементного камня, истинного водоцементного отношения, доли тонкомолотого медеплавильного шлака и суперпластификатора на основе эфиров поликарбоксилатов. Произведена статистическая обработка результатов математического планирования эксперимента, произведена оценка адекватности построенной математической модели. Выводы: установлено, что введение медеплавильного шлака в диапазоне 30…50 % от массы цемента положительно сказывается на прочности бетона при совместном использовании с суперпластификатором. Увеличение доли суперпластификатора свыше 0,16 % по сухому компоненту приводит к снижению прочности литых бетонов. Разработанные составы литых мелкозернистых бетонных смесей могут использоваться в густоармированных бетонных конструкциях, имеющих высокие требования по крупности заполнителей и пластичности смеси.

DOI: 10.22227/1997-0935.2017.10.1132-1144

Библиографический список
  1. Касторных Л.И. Добавки в бетоны и строительные растворы. Ростов н/Д. : Феникс, 2007. 221 с.
  2. Коновалова В.С., Румянцева В.Е. Влияние хлоридов на защитные способности бетона в железобетонных конструкциях // Физика волокнистых материалов: структура, свойства, наукоемкие технологии и материалы (Smartex). 2015. № 1. С. 308-312.
  3. Свинцов А.П., Николенко Ю.В., Харун М.И., Казаков А.С. Влияние вязкости нефтепродуктов на деформативные свойства бетона // Инженерно-строительный журнал. 2014. № 7 (51). С. 16-22.
  4. Вешнякова Л.А., Айзенштадт А.М. Оптимизация гранулометрического состава смесей для получения мелкозернистых бетонов // Промышленное и гражданское строительство. 2012. № 10. С. 19-22.
  5. Ерофеев В.Т., Смирнов В.Ф., Балатханова Э.М. и др. Исследование биостойкости наполненных цементных композитов в лабораторных и натурных условиях // Вестник БГТУ им. В.Г. Шухова. 2015. № 1. С. 41-47.
  6. Постникова О.А., Лукутцова Н.П., Мацаенко А.А., Пинчукова И.Н. Оценка коррозионной стойкости декоративного бетона с добавкой нанодисперсного диоксида титана // Бетон и железобетон - взгляд в будущее : науч. тр. III Всеросс. (II Междунар.) конф. по бетону и железобетону (г. Москва, 12-16 мая 2014 г.). М., 2014. С. 199-205.
  7. Гудим Ю.А., Голубев А.А. Эффективные способы утилизации отходов металлургического производства Урала // Экология и промышленность России. 2008. № 12. С. 4-8.
  8. Баженов Ю.М. Технология бетона. М. : Изд-во АСВ, 2002. 500 с.
  9. Худяков И.Ф., Кляйн С.Э., Агеев Н.Г. Металлургия меди, никеля, сопутствующих элементов и проектирование цехов. М. : Металлургия, 1993. 431 с.
  10. Купряков Ю.П. Шахтная плавка вторичного сырья цветных металлов. М. : ЦНИИцветмет экономики и информации, 1995. 164 с.
  11. Шаповалов Н.А., Загороднюк Л.Х., Тикунова И.В. и др. Шлаки металлургического производства - эффективное сырье для получения сухих строительных смесей // Фундаментальные исследования. 2013. № 1. С. 167-172.
  12. Юшков Б.С., Семенов С.С. Применение отходов металлургических предприятий для производства бетона // Модернизация и научные исследования в транспортном комплексе. 2014. № 1. С. 556-558.
  13. Светлов А.В., Потапов С.С., Потапов Д.С. и др. Исследование возможности извлечения цветных металлов и производства строительных материалов из шлаков медно-никелевого производства // Вестник Мурманского Государственного Технического Университета. 2015. № 2. Т. 18. С. 335-344.
  14. Дьяченко А.Н., Крайденко Р.И., Порывай Е.Б., Чегринцев С.Н. Вскрытие медеплавильных шлаков хлоридом аммония // Известия высших учебных заведений. Цветная металлургия. 2013. № 5. С. 9-12.
  15. Котельникова А.Л. Оценка шлаков медеплавильных производств как потенциальных источников тяжелых металлов (на примере медеплавильного шлака среднеуральского медеплавильного завода) // Леса России и хозяйство в них. 2011. № 1. С. 36-38.
  16. Леонтьев Л.И., Дюбанов В.Г. Техногенные отходы черной и цветной металлургии и проблемы окружающей среды // Экология и промышленность России. 2011. № 4. С. 32-35.
  17. Романова С.М., Ярошевский А.Б. Утилизация шлаков литьевого производства цветных металлов // Вестник Казанского технологического университета. 2011. № 5. С. 195-199.
  18. Кравцов А.В., Цыбакин С.В., Виноградова Е.А., Бородина Л.М. Бетоны с органоминеральной добавкой на основе тонкомолотого шлака медеплавильного производства // Вестник МГСУ. 2016. № 2. С. 86-97.
  19. Оськин С.П., Салахетдинов Ф.Ф. Центральное композиционное рототабельное планирование при оптимизации параметров нанотехнологического процесса получения резистивных пленок рения // Вестник Московского государственного открытого университета. Москва. Серия: Техника и технология. 2012. № 4. С. 44-52.
  20. Сулейманова Л.А., Кара К.А. Оптимизация состава неавтоклавного газобетона на композиционном вяжущем // Вестник БГТУ им. В.Г. Шухова. 2012. № 2. С. 28-30.
  21. Гатылюк А.Г., Грызлов В.С. Определение оптимального состава мелкозернистого шлакобетона на отходах металлургического производства // Вестник Череповецкого государственного университета. 2013. № 1 (47-2). С. 9-11.
  22. Старчюков Д.С., Мандрица Д.П., Кожин В.В., Степанова И.В. Математическое моделирование эксперимента при получении высокопрочного тяжелого бетона с зольсодержащими добавками // Технологии бетонов. 2015. № 5-6 (106-107). С. 64-70.
  23. Щербань. Е.М., Стельмах С.А., Серебряная И.А. и др. Оптимизация факторов, влияющих на эффективность обработки пенобетонных смесей воздействием переменного электрического поля // Инженерный вестник Дона. 2013. № 4. С. 197-201.
  24. Ерофеев В.Т., Смирнов В.Ф., Светлов Д.А. и др. Оптимизация составов цементных композитов с фунгицидными добавками на основе гуанидина // Приволжский научный журнал. 2014. № 2. С. 41-51.
  25. Ефремова О.В., Демидов С.В., Грызлов В.С. Математическое моделирование строительного древошлакового композиционного материала // Вестник Череповецкого государственного университета. 2013. № 2 (46-1). С. 17-22.
  26. Бондаренко Г.В. Проектирование состава бетона на основе вторичных продуктов производства череповецкого промышленного узла методом математического планирования эксперимента // Вестник Череповецкого государственного университета. 2012. № 1 (37-2). С. 7-11.
  27. Долотова Р.Г., Верещагин В.И., Смиренская В.Н. Определение составов ячеистых бетонов различной плотности при использовании полевошпатово-кварцевых песков методом математического планирования // Строительные материалы. 2012. № 12. С. 16-19.
  28. Сизова Н.Д., Михеев И.А. Алгоритм решения задачи проектирования состава бетона методом математического планирования эксперимента // Восточно-европейский журнал передовых технологий. 2010. № 6 (44). С. 8-10.
  29. Соловьева Л.Н., Чантурия Ю.В., Ткебучава П.Д. Оптимизация состава композиционного вяжущего c использованием метода математического планирования эксперимента // Ресурсоэнергоэффективные технологии в строительном комплексе региона : сб. науч. тр. по мат. II Всеросс. науч.-практ. конф. Саратов : Изд-во СГТУ, 2012. № 2. С. 51-55.

Cкачать на языке оригинала

УТИЛИЗАЦИя ОТХОДОВ МИНЕРАЛЬНОГО ВОЛОКНА В ПРОИЗВОДСТВЕ ГИПСОВЫХ ИЗДЕЛИЙ

Вестник МГСУ 12/2017 Том 12
  • Петропавловская Виктория Борисовна - Тверской государственный технический университет (ТвГТУ) кандидат технических наук, доцент, доцент кафедры производства строительных изделий и конструкций, Тверской государственный технический университет (ТвГТУ), 170026, г. Тверь, наб. Афанасия Никитина, д. 22.
  • Новиченкова Татьяна Борисовна - Тверской государственный технический университет (ТвГТУ) кандидат технических наук, доцент, доцент кафедры производства строительных изделий и конструкций, Тверской государственный технический университет (ТвГТУ), 170026, г. Тверь, наб. Афанасия Никитина, д. 22.
  • Бурьянов Александр Федорович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, доцент, профессор кафедры технологии вяжущих веществ и бетонов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Соловьев Виталий Николаевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор, профессор кафедры строительства объектов тепловой и атомной энергетики, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Петропавловский Кирилл Сергеевич - Тверской государственный технический университет (ТвГТУ) аспирант кафедры высшей математики, Тверской государственный технический университет (ТвГТУ), 170026, г. Тверь, наб. Афанасия Никитина, д. 22.

Страницы 1392-1398

Предмет исследования: эффективность использования композиций с применением базальтовых волокон доказана, но необходим подбор композиции в зависимости от выбранного вяжущего и добавок. Цели: исследована возможность утилизации отхода производства базальтового волокна при получении модифицированного гипсового композита с улучшенными свойствами. Материалы и методы: в качестве исходного материала применялось гипсовое вяжущее Самарского производства. В качестве армирующей добавки использовался отход волокон базальтового производства Тверской области. Исследования характеристик гипсового вяжущего и модифицированной смеси, а также сравнительный анализ показателей по средней плотности, общей пористости, пределам прочности при сжатии и изгибе гипсового композита проводились с использованием стандартных методик. Результаты: установлена зависимость физико-механических свойств модифицированного гипсового материала от содержания базальтовой добавки. Увеличение концентрации добавки требует повышенного водосодержания или дополнительного использования пластификатора. Выводы: модификация гипсового камня минеральной базальтовой добавкой позволит повысить прочность, плотность и долговечность тонкостенных гипсовых изделий, а следовательно, востребованность изделий за счет обеспечения их высокого качества при транспортировании и монтаже.

DOI: 10.22227/1997-0935.2017.12.1392-1398

Библиографический список
  1. Ферронская А.В. Перспективы производства и применения гипсовых материалов в XXI веке // Повышение эффективности производства и применения гипсовых материалов и изделий : мат. II Всерос. семинара с междунар. участием. М. : ЛМ-ПРИНТ, 2004. С. 11.
  2. Хежев Х.А. Гипсобетонные композиты, армированные базальтовыми волокнами // Вестник гражданских инженеров. 2013. № 2. С. 152-156.
  3. Кузьмина В.П. Способ введения базальтового волокна в композитные материалы // Нанотехнологии в строительстве: научный интернет-журнал. 2011. № 2. С. 59-64. Режим доступа: http://nanobuild.ru/ru_RU/journal/Nano-build_2_2009_RUS.pdf.
  4. Оснос М.С., Оснос С.П. Базальтовые непрерывные волокна: основные преимущества, характеристики, области применения // Композитный мир. 2009. № 5 (26). С. 36-39.
  5. Гордина А.Ф., Игнатьева А.Д., Полянских И.С. и др. Гипсовые композиции с механоактивированным микрокремнеземом // Интеграция, партнерство и инновации в строительной науке и образовании : сб. мат. Междунар. науч. конф. М. : МГСУ, 2017. С. 592-595.
  6. Строкова В.В., Череватова А.В., Жерновский И.В., Войтович Е.В. Особенности фазообразования в композиционном наноструктурированном гипсовом вяжущем // Строительные материалы. 2012. № 7. С. 9-12.
  7. Гаркави М.С., Панферова А.Ю., Некрасова С.А., Михайлова К.А. Формирование структуры наномодифицированного гипсополимерного материала // Сухие строительные смеси. 2013. № 2. С. 38-40.
  8. Nelyubova V.V., Strokova V.V., Sumin A.V., Jernovskiy I.V. The structure formation of the cellular concrete with nanostructured modifier // Key Engineering Materials. 2017. Vol. 729: Structural and Smart Materials. pp. 99-103.
  9. Петропавловская В.Б., Новиченкова Т.Б., Бурьянов А.Ф. и др. Самоармированные гипсовые композиты // Строительные материалы. 2014. № 7. С. 19-21.
  10. Kozhukhova N.I., Chizhov R.V., Zhernovsky I.V., Strokova V.V. Structure formation of geopolymer perlite binder vs. type of Alkali activating agent // International Journal of Pharmacy and Technology. 2016. Vol. 9 (1). Pp. 28220-28228.
  11. Потапова Е.Н., Манушина А.С., Урбанов А.В. Влияние волокон на свойства гипсоцементно-пуццоланового вяжущего // Успехи в химии и химической технологии. 2016. № 7. С. 66-67.
  12. Маева И.С., Яковлев Г.И., Первушин Г.Н. и др. Структурирование ангидритовой матрицы нанодисперсными модифицирующими добавками // Строительные материалы. 2009. № 6. С. 4-5.
  13. Бабаев В.Б., Строкова В.В., Нелюбова В.В. Базальтовое волокно как компонент для микроармирования цементных композитов // Вестник БГТУ им. В.Г. Шухова. 2012. № 4. С. 58-61.
  14. Завадская Л.В., Бердов Г.И., Агалакова Я.С., Шишмакова Е.А. Влияние дисперсных минеральных добавок на структуру и прочность гипсового камня // Известия высших учебных заведений. Строительство. 2013. № 10 (658). С. 18-22.
  15. Petropavlovskaya V.B., Novichenkova Т.B., Buryanov А.F., Petropavlovskii K.S. Self-hardening of a gypsum // Key Engineering Materials. 2017. Vol. 729: Structural and Smart Materials. pp. 517-521.
  16. Li G.Y., Wang P.M., Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi walled carbon nanotubes // Carbon. 2005. Vol. 43. Issue 6. Pp. 1239-1245.
  17. Lutz W. Composites Technologies-Zusamenfasung.
  18. Huntzingera D.N., Eatmonb T.D. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies // Journal of Cleaner Production. 2009. Vol. 17. Issue 7. Pp. 668-675.
  19. Jung T.H., Subramanian R.V. Alkali resistance enhancement of basalt fibers by hydrated zirconia films formed by the sol-gel process // Journal of Materials Research. 1994. Vol. 9. Issue 4. Pp. 1006-1013.
  20. Buryanov А.F., Novichenkova Т.B., Petropavlovskaya V.B., Petropavlovskii K.S. Simulating the structure of gypsum composites using pulverized basalt waste // MATEC Web Conf. 2017. Vol. 117: RSP 2017 - XXVI R-S-P Seminar 2017 Theoretical Foundation of Civil Engineering. Art. 00026.

Скачать статью

Проблемы рациональной утилизации рисовой соломы

Вестник МГСУ 7/2013
  • Горбунов Герман Иванович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») кандидат технических наук, профессор кафедры технологии композиционных материалов и прикладной химии, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Расулов Олимджон Рахмонбердиевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры технологии отделочных и изоляционных материалов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 106-113

Рассмотрены проблемы текущей утилизации и дальнейшего применения рисовой соломы и шелухи. Приведен анализ состояния решений указанных проблем в отрасли, рассмотрены существующие технологии утилизации и повторного использования рисовой соломы и шелухи. По результатам анализа сформулированы предпочтительные направления использования рисовых отходов.

DOI: 10.22227/1997-0935.2013.7.106-113

Библиографический список
  1. Щукин А.А. Это не сказка про трех поросят // Эксперт. 2012. № 13 (796). Режим доступа: http://expert.ru/expert/2012/13/eto-ne-skazka-pro-treh-porosyat/. Дата обращения: 05.04.2013.
  2. Исследование компонентного состава рисовой соломы ИРИ и свойств получаемой из нее целлюлозы / Р. Шокри Монсеф, А.К. Хрипунов, Ю.Г. Баклагина и др. // Новые достижения в химии и химической технологии растительного сырья : материалы III Всеросс. конф. Барнаул : Изд-во Алтайского государственного университета, 2007. Кн. 1. С. 53—55.
  3. Технология получения модифицированных волокон из отходов агропромышленного комплекса для использования при производстве асбестоцементных изделий / Д.К. Адылов, Г.М., Бектурдиев, Ф.М. Юсупов, Р.Н. Ким // Сотрудничество для проблемы отходов : материалы 8-й Междунар. конф., Харьков. Режим доступа: http://waste.ua/ cooperation/2011/theses/adylov.html. Дата обращения: 20.04.2013.
  4. Физико-химические свойства целлюлозы, полученной окислительно-органосольвентным способом из растительного сырья / А.В. Вураско, А.Р. Минаков, Н.Н. Гулемина, Б.Н. Дрикер // Материалы интернет-конференции. Режим доступа: http://ftacademy.ru/science/internet-conference/index.php?c=1&a=66. Дата обращения: 15.04.2013.
  5. Виноградов В.В., Виноградова Е.П. Способ подготовки рисовой шелухи для получения высокочистого диоксида кремния. Патент ЗФ № 2191158 (з. № 2001113525/12 от 22.05.2001 г.)
  6. Добржанский В.Г., Земнухова Л.А., Сергиенко В.И. Способ получения водорастворимых силикатов из золы рисовой шелухи. Патент РФ № 2106304 (з. № 96118801 от 23.09.96 г.)
  7. Способ получения диоксида кремния и тепловой энергии из кремнийсодержащих растительных отходов / А.А. Скрябин, А.М. Сидоров, Е.М. Пузырев, В.П. Щуренко. Патент РФ № 2291105. Барнаул, 2007.
  8. Румянцев Б.М., Данг Ши Лан. Пенозолобетон с активным кремнеземом // Строительные материалы и технологии XXI века. 2006. № 6. С. 38—39.

Скачать статью

Бетоны с органоминеральной добавкой на основе тонкомолотого шлака медеплавильного производства

Вестник МГСУ 2/2016
  • Кравцов Алексей Владимирович - Костромская государственная сельскохозяйственная академия (ФГБОУ ВО Костромская ГСХА) аспирант кафедры технологии, организации и экономики строительства, Костромская государственная сельскохозяйственная академия (ФГБОУ ВО Костромская ГСХА), 156530, Костромская обл., пос. Караваево, ул. Учебный городок, д. 34; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Цыбакин Сергей Валерьевич - Костромская государственная сельскохозяйственная академия (ФГБОУ ВО Костромская ГСХА) кандидат технических наук, доцент, декан архитектурно-строительного факультета, Костромская государственная сельскохозяйственная академия (ФГБОУ ВО Костромская ГСХА), 156530, Костромская обл., пос. Караваево, ул. Учебный городок, д. 34; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Виноградова Екатерина Алексеевна - Костромская государственная сельскохозяйственная академия (ФГБОУ ВО «Костромская ГСХА») студент кафедры технологии, организации и экономики строительства, Костромская государственная сельскохозяйственная академия (ФГБОУ ВО «Костромская ГСХА»), 156530, Костромская область, Костромской район, п. Караваево, ул. Учебный городок, д. 34; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Бородина Лидия Михайловна - Костромская государственная сельскохозяйственная академия (ФГБОУ ВО «Костромская ГСХА») студент кафедры технологии, организации и экономики строительства, Костромская государственная сельскохозяйственная академия (ФГБОУ ВО «Костромская ГСХА»), 156530, Костромская область, Костромской район, п. Караваево, ул. Учебный городок, д. 34.

Страницы 86-97

Рассмотрен вопрос использования отходов медеплавильного производства Челябинской области в качестве компонента органоминеральной добавки для производства бетона с техногенными отходами. Изучены сроки схватывания цементного камня с добавлением органоминеральной добавки на основе тонкомолотого шлака медеплавильного производства и суперпластификатора. Графически представлены термические колебания бетонной смеси с тонкомолотой добавкой в течение 22 ч твердения в нормальных условиях и результаты ультразвукового исследования сроков схватывания бетонной смеси в течение 6 ч твердения. Представлены процесс набора прочности бетона с тонкомолотой добавкой в течение 28 сут твердения в нормальных условиях и результаты испытания исследуемых образцов бетона на осевое сжатие. Полученные характеристики подтверждают целесообразность применения данного вида отходов цветной металлургии в бетонах.

DOI: 10.22227/1997-0935.2016.2.86-97

Библиографический список
  1. Котельникова А.Л., Рябинин И.Ф., Кориневская Г.Г., Халезов Б.Д., Реутов Д.С., Муфтахов В.А. К вопросу рационального использования отходов переработки медеплавильных шлаков // Недропользование XXI век. 2014. № 6 (50). С. 14-19.
  2. Водяницкий Ю.Н. Загрязнение почв тяжелыми металлами и металлоидами и их экологическая опасность (аналитический обзор) // Почвоведение. 2013. № 7. С. 872-881.
  3. Леонтьев Л.И., Дюбанов В.Г. Техногенные отходы черной и цветной металлургии и проблемы окружающей среды // Экология и промышленность России. 2011. № 4. С. 32-35.
  4. Кориневская Г.Г., Муфтахов В.А., Котельникова А.Л., Халезов Б.Д., Реутов Д.С. Медеплавильные шлаки и вопросы утилизации минеральных отходов // Минералогия техногенеза : сб. 2014. № 15. С. 244-250.
  5. Котельникова А.Л. О подвижных формах тяжелых металлов медеплавильных шлаков // Труды института геологии и геохимии им. Академика А.Н. Заварицкого Уро РАН. Екатеринбург, 2012. № 159. С. 96-98.
  6. Водяницкий Ю.Н., Плеханова И.О., Прокопович Е.В., Савичев А.Т. Загрязнение почв выбросами предприятий цветной металлургии // Почвоведение. 2011. № 2. С. 240-249.
  7. Чуманов В.И., Чуманов И.В., Кирсанова А.А., Амосова Ю.Е. К вопросу о комплексной переработке сталеплавильных шлаков и их использовании в строительстве // Вестник Южно-Уральского государственного университета. Серия: Металлургия. 2013. № 1. С. 56-60.
  8. Шаповалов Н.А., Загороднюк Л.Х., Тикунова И.В., Щекина А.Ю., Шкарин А.В. Шлаки металлургического производства - эффективное сырье для получения сухих строительных смесей // Фундаментальные исследования. 2013. № 1-1. С. 167-172.
  9. Юшков Б.С., Семенов С.С. Применение отходов металлургических предприятий для производства бетона // Модернизация и научные исследования в транспортном комплексе. 2014. Т. 1. С. 556-558.
  10. Светлов А.В., Потапов С.С., Потапов Д.С., Кравченко Е.А., Ерохин Ю.В., Потокин А.С., Селиванова Е.А., Суворова О.В., Кумарова В.А., Нестеров Д.П., Мака-ров Д.В., Маслобоев В.А. Исследование возможности извлечения цветных металлов и производства строительных материалов из шлаков медно-никелевого производства // Вестник Мурманского государственного технического университета. 2015. № 2. Т. 18. С. 335-344.
  11. Дьяченко А.Н., Крайденко Р.И., Чегринцев С.Н., Порывай Е.Б. Вскрытие медеплавильных шлаков хлоридом аммония // Известия высших учебных заведений. Цветная металлургия. 2013. № 5. С. 9-12.
  12. Котельникова А.Л. Оценка шлаков медеплавильных производств как потенциальных источников тяжелых металлов (на примере медеплавильного шлака среднеуральского медеплавильного завода) // Леса России и хозяйство в них. 2011. № 1. С. 36-38.
  13. Кравцов А.В., Виноградова Е.А., Цыбакин С.В. Влияние тонкомолотого медеплавильного шлака на процесс структурообразования цементного камня // Промышленное и гражданское строительство. 2015. № 8. С. 34-37.
  14. Кравцов А.В., Виноградова Е.А., Бородина Л.М., Цыбакин С.В. Исследование динамики набора прочности бетона с использованием отходов медеплавильного производства // Промышленное и гражданское строительство. 2015. № 9. С. 47-50.
  15. Трошкина Е.А., Мухина К.С. Разработка составов и исследование свойств самоуплотняющихся бетонов // Актуальные проблемы современной науки, техники и образования. 2014. Т. 2. № 1. С. 42-44.
  16. Иващенко Ю.Г., Тимохин Д.К., Борисов О.А. Исследование влияния добавок поликарбоксилатов на свойства цементных композиций // Ресурсоэнергоэффективные технологии в строительном комплексе региона. 2012. № 2. С. 101-104.
  17. Изотов В.С., Ибрагимов Р.А. Ресурсосбережение при производстве железобетонных изделий с добавками гиперпластификаторов // Технологии бетонов. 2013. № 5 (82). С. 40-41.
  18. Калашников В.И., Гуляева Е.В., Валиев Д.М. Влияние вида супер- и гиперпластификаторов на реотехнические свойства цементно-минеральных суспензий, порошковых бетонных смесей и прочностные свойства бетонов // Известия высших учебных заведений. Строительство. 2011. № 12. С. 40-45.
  19. Буланов П.Е., Мавлиев Л.Ф., Вдовин Е.А. Оптимизация состава щебеночно-песчаной смеси обработанной портландцементом в комплексе с пластифицирующей и гидрофобизирующей добавкой // Известия Казанского государственного архитектурно-строительного университета. 2015. № 2. С. 300-305.
  20. Василик П.Г., Бурьянов А.Ф., Гонтарь Ю.В., Чалова А.И. Влияние супер- и гиперпластификаторов на водопотребность и прочностные характеристики затвердевшего камня на основе комплексного вяжущего // Сухие строительные смеси. 2011. № 4. С. 20-21.
  21. Изотов В.С., Ибрагимов Р.А. Новые комплексные добавки на основе эфиров поликарбоксилата // Технологии бетонов. 2012. № 3-4 (68-69). С. 34-35.
  22. Кравцов А.В., Бородина Л.М., Цыбакин С.В., Соколов Г.М. Исследование влияния суперпластификаторов на основе поликарбоксилатных эфиров на свойства бетона // Промышленное и гражданское строительство. 2015. № 10. С. 39-43.
  23. Михайлов Г.Г., Трофимов Б.Я., Гамалий Е.А. Морозостойкость пропаренного бетона на шлакопортландцементах // Вестник Южно-Уральского государственного университета. Серия: Строительство и архитектура. 2012. № 17 (276). С. 42-47.
  24. Чазов А.В., Шишмакова М.С. Шлакощелочные материалы в дорожном строительстве // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2012. № 1. С. 114-117.
  25. Маджистри М., Падовани Д., Форни П. Оптимизация свойств цементов с добавками при использовании интенсификаторов помола // Цемент и его применение. 2013. № 5. С. 115-118.
  26. Гусев Б.В., Ин Иен-Лян С., Кривобородов Ю.Р. Активация твердения шлакопортландцемента // Технологии бетонов. 2012. № 7-8 (72-73). С. 21-24.

Скачать статью

Эколого-экономические аспекты применения тонкодисперсных отходов мрамора в производстве облицовочных керамических материалов

Вестник МГСУ 8/2014
  • Землянушнов Дмитрий Юрьевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры строительных материалов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26, 8 (499) 183-32-29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Соков Виктор Николаевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») доктор технических наук, профессор кафедры строительных материалов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26, 8 (499) 183-32-29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Орешкин Дмитрий Владимирович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») доктор технических наук, заведующий кафедрой строительных материалов; (8499)183-32-29, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярослав- ское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 118-126

Доказана экономическая целесообразность использования тонкодисперсных отходов мрамора для производства облицовочных керамических изделий методом объемного окрашивания. Оценены экологические аспекты применения тонкодисперсных отходов мрамора, технологии получения керамических изделий различного цвета.

DOI: 10.22227/1997-0935.2014.8.118-126

Библиографический список
  1. Жиронкин П.В., Геращенко В.Н., Гринфельд Г.И. История и перспективы промышленности керамических строительных материалов в России // Строительные материалы. 2012. № 5. С. 13-18.
  2. Талпа Б.В. Перспективы развития минерально-сырьевой базы для производства светложгущейся стеновой керамики на Юге России // Строительные материалы. 2014. № 4. С. 20-23.
  3. Абдрахимов Д.В., Комохов П.Г., Абдрахимов А.В., Абдрахимов В.З., Абдрахимова Е.С. Керамический кирпич из отходов производств без применения традиционных природных материалов // Строительные материалы. 2002. № 8. С. 26-27.
  4. Потапов А.Д., Потапов И.А. Инженерно-геологические или геоэкологические процессы и явления, их развитие в современности // Вестник МГСУ. 2012. № 9. С. 191-196.
  5. Насонова А.Е., Князева В.П., Жук П.М. Анализ систем экологически обоснованного выбора строительных материалов // Экология урбанизированных территорий. 2012. № 4. С. 93-97.
  6. Князева В.П., Микульский В.Г., Сканави Н.А. Экологический подход к оценке строительных материалов из отходов промышленности // Строительные материалы, оборудование, технологии XXI века. 2000. № 6. С. 16-17.
  7. Потапов А.Д., Абрамян С.Г. Экологическая паспортизация линейных объектных ремонтно-строительных потоков с применением географических информационных системных технологий // Вестник МГСУ. 2011. № 1. С. 193-197.
  8. Ахмедов А.М., Абрамян С.Г., Потапов А.Д. Разработка экологически безопасного способа укладки магистрального нефтегазопровода // Вестник МГСУ. 2014. № 5. С. 100-107.
  9. Pugin K.G., Vaisman Y.I. Methodological Approaches to Development of Ecologically Safe Usage Technologies of Ferrous Industry Solid Waste Resource Potential // World Applied Sciences Journal. 2013. Vol. 22. Special Issue on Techniques and Technologies. Pp. 28-33.
  10. Пугин К.Г. Вопросы экологии использования твердых отходов черной металлургии в строительных материалах // Строительные материалы. 2012. № 8. С. 34-36.
  11. Lewicka E. Conditions of the feldspathic raw materials supply from domestic and foreign sources in Poland // Gospodarka surowcami mineralnymi. 2010. Vol. 26. Pp. 5-19.
  12. Park S.S., Meek T.T. Characterization of ZrO -Al O composites sintered in a 2,45 GHz electromagnetic field // Journal of Materials Science. 1991. Vol. 26. Рр. 251-256.
  13. Калантар Г.А. Архитектурно-строительная керамика светлой окраски из глин, применяемых для производства красного строительного кирпича : дисс. канд. техн. наук. М. : МИСИ им. В.В. Куйбышева, 1954. 137 с.
  14. Гончаров Ю.И., Солопов С.В., Король С.П., Костенецкий Д.А., Лопухов С.Б. Некоторые аспекты получения керамики различной цветовой гаммы // Известия Орловского государственного технического университета. Серия: Строительство и транспорт. 2007. № 1/13. С. 55-61.
  15. Lewicka E., Wyszomirski P. Polish feldspar raw materials for the domestic ceramic tile industry - current state and prospects // Materia y ceramiczne. 2010. № 4 (62). Pp. 582-585.
  16. Deplazes А. Constructing architecture: materials, processes, structures. EU. : Publishers for Architecture, 2005. 508 p.
  17. Fernandez J. Material Architecture: Emergent materials for innovative buildings and ecological construction. Architectural Press, 2006. 332 p.
  18. Hinckley D.N. Variability in «crystallinity» values among the Realign deposits of the coastal of the Gorgia and South Carolina // Proceedings 11th National Conference of clays and clay minerals. 1963. Pp. 123-128.
  19. Потапов А.Д., Сенющенкова И.М., Новикова О.О., Гудкова Е.А. Проблема использования городских нарушенных территорий // Вестник МГСУ. 2012. № 9. С. 197-202.
  20. Орешкин Д.В. Проблемы строительного материаловедения и производства строительных материалов // Строительные материалы. 2010. № 11. С. 6-8.

Скачать статью

НАУЧНО-МЕТОДОЛОГИЧЕСКИЕ ПОДХОДЫ К СОЗДАНИЮ МОДЕЛИ КОМПЛЕКСНОЙ СИСТЕМЫ УПРАВЛЕНИЯ ПОТОКАМИ СТРОИТЕЛЬНЫХ ОТХОДОВ

Вестник МГСУ 9/2015
  • Цховребов Эдуард Станиславович - Научно-исследовательский институт «Центр экологической промышленной политики» (НИИ «ЦЭПП») кандидат экономических наук, доцент, Научно-исследовательский институт «Центр экологической промышленной политики» (НИИ «ЦЭПП»), 141006, г. Мытищи, Олимпийский пр-т, д. 38; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Величко Евгений Георгиевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор, профессор кафедры строительных материалов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 95-110

Рассмотрены и проанализированы научно-методологические подходы к созданию модели комплексной системы управления потоками строительных отходов в рамках организации единой экологически безопасной и экономически эффективной комплексной системы обращения отходов в регионах страны.

DOI: 10.22227/1997-0935.2015.9.95-110

Библиографический список
  1. Стратегия развития промышленности строительных материалов и индустриального домостроения на период до 2020 года. Утверждена приказом Министерства регионального развития РФ от 30 мая 2011 г. № 262. М., 2011. 56 с.
  2. Голубин А.К., Клепацкая И.Е. Развитие рыночных отношений в системе обращения с отходами // Транспортное дело России. 2009. № 4. С. 104-106.
  3. Деятельность по обращению с опасными отходами : в 2-х тт. / под общ. ред. В.Ф. Желтобрюхова, Н.Г. Рыбальского, А.С. Яковлева. М. : РЭФИА, 2003. Т. 2. 444 с.
  4. Джексон К., Уоткин Е. «Мусорная» политика ЕС: инструменты контроля // Твердые бытовые отходы. 2013. № 1 (79). С. 54-57.
  5. Тихоцкая И.С. Япония: Инновационный подход к управлению ТБО // Твердые бытовые отходы. 2013. № 6 (84). С. 52-57.
  6. Celik N., Antmann E., Shi X., Hayton B. Simulation-based optimization for planning of effective waste reduction, diversion, and recycling programs // Proc. of the 2012 Industrial and Systems Engineering Research Conference. Режим доступа: http://www.coe.miami.edu/celik/swmwebsite/publications/Y1_ConferencePaper_I.pdf. Дата обращения: 16.03.2015.
  7. Nixon J.D., Wright D.G., Dey P.K., Ghosh S.K., Davies P.A. A comparative assessment of waste incinerators in the UK // Waste Management. 2013. Vol. 33. No. 11. Pp. 2234-2244.
  8. Vahdani B., Tavakkoli-Moghaddam R., Baboli A., Mousavi S. A new fuzzy mathematical model in recycling collection networks: a possibilistic approach // World Academy of Science, Engineering and Technology. 2013. Vol. 78. Pp. 45-49.
  9. Цховребов Э.С., Четвертаков Г.В., Шканов С.И. Экологическая безопасность в строительной индустрии. М. : Альфа-М, 2014. 304 с. (Современные технологии)
  10. Цховребов Э.С., Величко Е.Г. Вопросы охраны окружающей среды и здоровья человека в процессе обращения строительных материалов // Строительные материалы. 2014. № 5. С. 99-103.
  11. Губенко В.К., Лямзин А.А., Помазков М.В., Губенко О.В. Логистика отходов в мегаполисе // Материалы 11 Междунар. науч.-практ. конф. Киев : Мин. транс. и связи Украины, 2009. 200 с.
  12. Садов А.В., Цховребов Э.С. Пути решения проблемы обращения с отходами на уровне региона // Вестник РАЕН. 2011. № 5. С. 29-31.
  13. Цховребов Э.С., Яйли Е.А., Церенова М.П., Юрьев К.В. Обеспечение экологической безопасности при проектировании объектов недвижимости и проведении строительных работ. СПб. : РГГМУ, 2013. 360 с.
  14. Куценко В.В., Цховребов Э.С., Сидоренко С.Н., Церенова М.П., Киричук А.А. Проблемы обеспечения экологической безопасности региона // Вестник Российского университета дружбы народов. Серия: Экология и безопасность жизнедеятельности. 2013. № 2. С. 75-82.
  15. Belevi H., Baccini P. Long-term emission from Municipal Solid Waste Landfills // Landfills of waste: Leachate. London, 1992. Pр. 12-15.
  16. Вайсман Я.И., Тагилова О.А., Садохина Е.Л. Разработка методологических принципов создания и оптимизации учета движения отходов с целью повышения эколого- экономико-социальной эффективности управления их обращением // Экология и промышленность России. 2013. № 12. С. 40-45.
  17. Колотырин К.П. Особенности технологического обеспечения процесса обращения с отходами потребления // Вестник Саратовского государственного технического университета. 2008. Т. 3. № 1 (34). С. 164-174.
  18. Костарев С.Н., Мурынов А.И. Автоматизированное проектирование, управление и системный анализ природно-технических объектов утилизации отходов // САПР и графика. 2010. № 3 (161). С. 78-80.
  19. Абрамова М.В., Бачурина Н.Д. Сетевая модель управления потоками отходов // Вестник Восточноукраинского университета им. В. Даля. 2008. № 3 (121). С. 73-78.
  20. Алимов А. Использование возможностей логистики в модернизации работы с отходами производства (логистика отходов) // РИСК: Ресурсы, Информация, Снабжение, конкуренция. 2009. № 1. С. 37-39.
  21. Алексанин А.В. Автоматизация управления отходами строительного производства // Промышленное и гражданское строительство. 2014. № 10. С. 79-81.
  22. Левкин Г.Г. Экологические аспекты управления цепями поставок // Логистика. 2009. № 2. С. 24-25.
  23. Терентьев П.А. Классификации и модели логистики возвратных потоков // Логистика сегодня. 2010. № 4. С. 242-251.
  24. Sevimoglu O., Tansel B. Effect of persistent compounds in landfill gas on engine performance during energy recovery: A case study // Waste management. 2013. Vol. 33. No. 1. Pp. 74-80.
  25. Перекальский В.А. Отечественный и зарубежный опыт экономико-математического моделирования в сфере управления обращением с отходами // Стратегии бизнеса. 2013. № 2 (2). С. 38-41.
  26. Хейт Ф. Математическая теория транспортных потоков / пер. с англ. Е.Г. Коваленко. М. : Мир, 1966. 288 с.
  27. Гасников А.В., Кленов С.Л., Нурминский Е.А., Холодов Я.А., Шамрай Н.Б. Введение в математическое моделирование транспортных потоков. М. : Изд-во Мос. центра непрер. математ. образ., 2012. 428 с.
  28. Смирнов Н.Н., Киселев А.Б., Никитин В.Ф., Юмашев М.В. Математическое моделирование автотранспортных потоков. М. : Изд-во МГУ, 1999. 184 с.
  29. Marković D., Janošević D., Jovanović M., Nikolić V. Application method for optimization in solid waste management system in the city of Niš // Facta universitatis. Series: Mechanical Engineering. 2010. Vol. 8. No. 1. Pp. 65-67.
  30. Корнилов А.М., Пазюк К.Т. Экономико-математическое моделирование рециклинга твердых бытовых отходов и использование вторичного материального сырья // Вестник Тихоокеанского государственного университета. 2008. № 2 (9). C. 69-80.

Скачать статью

Результаты 1 - 7 из 7