ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СТРОИТЕЛЬНЫХ СИСТЕМ. ПРОБЛЕМЫ МЕХАНИКИ В СТРОИТЕЛЬСТВЕ

Базисные функции и двусторонние оценки в задачах устойчивости упругих неоднородно сжатых стержней, выраженных через изгибающие моменты с дополнительными условиями

Вестник МГСУ 2/2014
  • Купавцев Владимир Владимирович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») Candidate of Physical and Mathematical Sciences, Associated Professor, Department of Theoretical Mechanics and Aerodynamics, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 26 Yaroslavskoe shosse, Мoscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 39-46

Разработан алгоритм вычисления двусторонних оценок критического значения параметра нагружения в трех задачах устойчивости упругого неоднородно сжатого однопролетного стержня, вариационные формулировки которых представлены через внутренний изгибающий момент с интегральными условиями. Вычисление оценок сверху и снизу сведено к нахождению наибольших собственных чисел матриц, элементы которых выражены через интегралы от базисных функций, которые с точностью до линейного полинома совпадают с изгибающими моментами, возникающими при бифуркации равновесия стержня постоянного поперечного сечения, сжатого продольными силами на концах.

DOI: 10.22227/1997-0935.2014.2.39-46

Библиографический список
  1. Купавцев В.В. Вариационные формулировки задач устойчивости упругих стержней через изгибающие моменты // Вестник МГСУ. 2010. Т. 3. № 4. С. 285—289.
  2. Алфутов Н.А. Основы расчета на устойчивость упругих систем. М. : Машиностроение, 1991. 336 с.
  3. Купавцев В.В. Двусторонние оценки в задачах устойчивости упругих стержней, выраженных через изгибающие моменты // Вестник МГСУ. 2013. № 2. С. 47—54.
  4. Ректорис К. Вариационные методы в математической физике и технике. М. : Мир, 1985. 589 с.
  5. Doraiswamy Srikrishna, Narayanan Krishna R., Srinivasa Arun R. Finding minimum energy configurations for constrained beam buckling problems using the Viterbi algorithm // International Journal of Solids and Structures. 2012, vol. 49, no. 2, pp. 289—297. DOI: 10.1016/j.ijsolstr.2011.10.003.
  6. Пантелеев С.А. Двусторонние оцени в задачах об устойчивости сжатых упругих блоков // Известия РАН. МТТ. 2010. № 1. С. 51—63.
  7. Santos H.A., Gao D.Y. Canonical dual finite element method for solving postbuckling problems of a large deformation elastic beam // International Journal Non-linear Mechanics. 2012, vol. 47, no. 2, pp. 240—247. DOI: 10.1016/j.ijnonlinmec.2011.05.012.
  8. Selamet Serdar, Garlock Maria E. Predicting the maximum compressive beam axial. force during fire considering local buckling // Journal of Constructional Steel Research. 2012, vol. 71, pp. 189—201. DOI: 10.1016/j.jcsr.2011.09.014.
  9. Тамразян А.Г. Динамическая устойчивость сжатого железобетонного элемента как вязкоупругого стержня // Вестник МГСУ. 2011. Т. 2. № 1. С. 193—196.
  10. Манченко М.М. Устойчивость и кинематические уравнения движения динамически сжатого стержня // Вестник МГСУ. 2013. № 6. С. 71—76.

Скачать статью

ДВУСТОРОННИЕ ОЦЕНКИ В ЗАДАЧАХ УСТОЙЧИВОСТИ УПРУГИХ СТЕРЖНЕЙ, ВЫРАЖЕННЫХ ЧЕРЕЗ ИЗГИБАЮЩИЕ МОМЕНТЫ

Вестник МГСУ 2/2013
  • Купавцев Владимир Владимирович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») Candidate of Physical and Mathematical Sciences, Associated Professor, Department of Theoretical Mechanics and Aerodynamics, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 26 Yaroslavskoe shosse, Мoscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 47-54

Рассмотрены задачи устойчивости упругих неоднородно сжатых однопролетных стержней, вариационные формулировки критического значения параметра нагружения в которых выражены через возникающие при бифуркации изгибающие моменты без дополнительных условий. Вычисление оценок снизу и сверху для искомого параметра нагружения сведено к нахождению наибольшего собственного числа матриц, элементы которых выражены через известные изгибающие моменты, возникающие при бифуркации равновесия стержня постоянного поперечного сечения, сжатого продольными силами на концах.

DOI: 10.22227/1997-0935.2013.2.47-54

Библиографический список
  1. Ржаницын А.Р. Устойчивость равновесия упругих систем. М. : Гостехиздат,1955. 475 с.
  2. Купавцев В.В. Вариационные формулировки задач устойчивости упругих стержней через изгибающие моменты // Вестник МГСУ. 2010. Т. 3. № 4. С. 285—289.
  3. Купавцев В.В. О вариационных формулировках задач устойчивости стержней с упруго защемленными и опертыми концами // Вестник МГСУ. 2011. № 4. С. 283—287.
  4. Купавцев В.В. К двусторонним оценкам критических нагрузок неоднородно сжатых стержней // Известия вузов. Строительство и архитектура. 1984. № 8. С. 24—29.
  5. Пантелеев С.А. Двусторонние оценки в задачах об устойчивости сжатых упругих блоков // Известия РАН. МТТ. 2010. № 1. С. 51—63.
  6. Ижендеев А.В. Оценка внутренних усилий тонкостенного стержня открытого профиля // Известия вузов. Строительство. 2004. № 3. С. 100—103.
  7. Чанышев А.И., Игонина Е.А. О потере устойчивости бесконечно длинной полосы за пределом упругости при сжатии // Физическая мезомеханика. 2010. Т. 13. № 51. С. 89—95.
  8. Паймушин В.Н., Гюнал И.Ш., Луканкин С.А. Исследование качества нелинейных уравнений теории упругости на задачах устойчивости плоских криволинейных стержней слоистой структуры (постановка задачи) // Известия вузов. Авиационная техника.0. № 2. С. 34—37.
  9. Дудченко А.В., Купавцев В.В. Двусторонние оценки устойчивости упругого консольного стержня, сжатого полуследящей силой // Вестник МГСУ. 2011. № 6. С. 302—306.
  10. Дудченко А.В., Купавцев В.В. Двусторонние оценки устойчивости упругого консольного стержня, сжатого через шатун // Вестник МГСУ. 2012. № 7. С. 75—81.

Скачать статью

Результаты экспериментальных исследований железобетонных конструкций ГТС, имеющих межблочные строительные швы, усиленных внешним армированием из углеродного волокна

Вестник МГСУ 9/2018 Том 13
  • Рубин Олег Дмитриевич - АО «Научно-исследовательский институт энергетических сооружений» (АО «НИИЭС») доктор технических наук, генеральный директор, АО «Научно-исследовательский институт энергетических сооружений» (АО «НИИЭС»), 125362, г. Москва, Строительный пр., 7А, а/я 393.
  • Лисичкин Сергей Евгеньевич - ООО «Инженерный центр сооружений, конструкций и технологий в энергетике» (ООО «ИЦ СКТЭ») доктор технических наук, заместитель генерального директора, ООО «Инженерный центр сооружений, конструкций и технологий в энергетике» (ООО «ИЦ СКТЭ»), 125362, г. Москва, ул. Свободы, д. 35.
  • Фролов Кирилл Евгеньевич - ПАО «Федеральная гидрогенерирующая компания - РусГидро» (ПАО «РусГидро») инженер, заместитель генерального директора по научно-проектной деятельности, ПАО «Федеральная гидрогенерирующая компания - РусГидро» (ПАО «РусГидро»), 117393, г. Москва, ул. Архитектора Власова, д. 51.

Страницы 1067-1079

Обосновано применение усиления железобетонных конструкций ГТС внешним армированием из углеродного волокна. Проведены экспериментальные исследования моделей характерных конструкций гидротехнических сооружений, в том числе имеющих межблочные строительные швы. Испытаны модели балочного типа из бетона класса B15 с процентом армирования 0,39 % и из бетона класса B25 с процентом армирования 0,83 % под действием изгибающего момента. Модели фрагментов железобетонных конструкций гидротехнических сооружений из бетона класса B15 с процентом армирования 0,445 % и из бетона класса B25 с процентом армирования 0,7 % испытаны на действие центрального растяжения. Железобетонные модели балочного типа усиливались внешним армированием из углеродных лент типа FibArm 530/300. Модели фрагментов ГТС усиливались внешним армированием из углеродных лент типа FibArm Tape 530/300 и из углеродных композитных ламелей типа FibArm Lamel 12/50. Железобетонные модели балочного типа усиливались углеродными лентами (продольными лентами на нижней растянутой грани и поперечными лентами в пролетной и опорной зонах). Модели фрагментов железобетонных конструкций ГТС усиливались углеродными лентами и углеродными композитными ламелями, направленными вдоль действия продольного растягивающего усилия. Результаты экспериментальных исследований показали значительное увеличение прочности железобетонных конструкций гидротехнических сооружений за счет их усиления посредством внешнего армирования из углеродного волокна, а также позволили выявить особый характер трещинообразования, обусловленный наличием межблочных строительных швов. Предмет исследования: железобетонные конструкции ГТС (при наличии в них межблочных строительных швов), усиленные внешним армированием из углеродного волокна. Цели: экспериментальное обоснование применения внешнего армирования из углеродного волокна для усиления железобетонных конструкций ГТС. Материалы и методы: железобетонные модели изготавливались из обычного тяжелого бетона классов В15 и В25 и арматуры класса А500С. Внешнее армирование выполнялось из углеродных лент типа FibArm Tape 530/300 и FibArm Lamel12/50. Экспериментальные исследования проводились на основе физического моделирования характерных железобетонных конструкций ГТС, имеющих межблочные строительные швы. При этом модели балочного типа из бетона класса В15 с процентом армирования 0,39 % и из бетона класса В25 с процентом армирования 0,83 % были испытаны на действие изгибающего момента. Модели фрагментов железобетонных конструкций ГТС из бетона класса В15 с процентом армирования 0,445 % и из бетона В25 с процентом армирования 0,7 % были испытаны на действие центрального растяжения. Опытные модели оснащались контрольно-измерительной аппаратурой для определения величин прогибов, деформаций бетона и элементов усиления моделей, ширины раскрытия трещин и межблочных швов. Результаты: получено повышение прочности железобетонных конструкций ГТС (в 1,47-2,34 раза) при действии изгибающего момента и центрального растяжения за счет их усиления внешним армированием из углеродного волокна. Выводы: на основе полученных экспериментальных данных о повышении прочности железобетонных конструкций ГТС (в 1,47-2,34 раза) за счет усиления углеродными композитными лентами и углеродными композитными ламелями обосновано применение внешнего армирования из углеродных лент и ламелей при действии изгибающего момента и центрального растяжения. Зафиксирован особый характер трещинообразования, обусловленный наличием межблочных швов, изучение которого позволяет управлять процессами реализации технических решений при усилении, ремонте, реконструкции железобетонных конструкций гидротехнических сооружений.

DOI: 10.22227/1997-0935.2018.9.1067-1079

Библиографический список
  1. Сердюк А.И., Чернявский В.Л. Опыт усиления строительных конструкций композиционными материалами при реконструкции Баксанской ГЭС // Гидротехника. 2013. № 3 (32). C. 115-117
  2. Чернявский В.Л. Система ремонта и усиления строительных конструкций // Гидротехника. 2010. № 4 (21) - 2011. № 1 (22). С. 60-63
  3. Козырев Д.В., Симохин А.С., Чернявский В.Л., Осьмак П.П. Ремонт участков напорного коллектора композитными материалами // Монтажные и специальные работы в строительстве. 2009. № 9. С. 2-5
  4. Рубин О.Д., Лисичкин С.Е., Балагуров В.Б., Александров А.В. Новая технология ремонта ГТС посредством армирования композитными материалами // Известия Всероссийского научно-исследовательского института гидротехники им. Б.Е. Веденеева. 2016. Т. 280. C. 3-9
  5. Александров А.В., Рубин О.Д., Лисичкин С.Е., Балагуров В.Б. Расчетное обоснование и технические решения по усилению железобетонных конструкций ГЭС (ГАЭС), имеющих трещины различного направления, при действии комплекса нагрузок // Строительная механика инженерных конструкций и сооружений. 2014. № 6. С. 50-54
  6. Рубин О.Д., Лисичкин С.Е., Фролов К.Е. Результаты экспериментальных исследований железобетонных конструкций гидротехнических сооружений, усиленных углеродными лентами, при действии изгибающего момента // Строительная механика инженерных конструкций и сооружений. 2016. № 6. C. 58-63
  7. Рубин О.Д., Лисичкин С.Е., Фролов К.Е. Методика расчета на прочность нормальных сечений железобетонных конструкций гидротехнических сооружений, усиленных внешним армированием на основе углеродных материалов // Вестник Российского университета дружбы народов. Сер. : Инженерные исследования. 2017. Т. 18. № 1. С. 20-28. DOI: 10.22363/2312-8143-2017-18-1-20-28
  8. Zhou Y., Gou M., Zhang F., Zhang S., Wang D. Reinforced concrete beams strengthened with carbon fiber reinforced polymer by friction hybrid bond technique: Experimental investigation // Materials and Design. 2013. Vol. 50. Pp. 130-139. DOI: 10.1016/j.matdes.2013.02.089
  9. Akbarzadeh H., Maghsoudi A.A. Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer // Materials and Design. 2010. Vol. 31. Issue 3, pp. 1130-1147. DOI: 10.1016/j.matdes.2009.09.041
  10. Wu Y.-F., Lu J. Preventing debonding at the steel to concrete interface through strain localization // Composites Part B: Engineering. 2013. Vol. 45. Issue 1. Pp. 1061-1070. DOI: 10.1016/j.compositesb.2012.08.020
  11. Duell J.M., Wilson J.M., Kessler M.R. Analysis of carbon composite overwrap pipeline repair system // International Journal of Pressure Vessels and Piping. 2008. Vol. 85. Issue 11, рр. 782-788. DOI: 10.1016/j.ijpvp.2008.08.001
  12. Van Den Einde L., Zhao L., Seible F. Use of FRP composites in civil structural applications // Construction and Building Materials. 2003. Vol. 17. Issue 6-7. Pp. 389-403. DOI: 10.1016/s0950-0618(03)00040-0
  13. Chajes M.J., Thomson T.A., Farschman C.A. Durability of concrete beams externally reinforced with composite fabrics // Construction and Building Materials. 1995. Vol. 9, no. 3. Pp. 141-148. DOI: 10.1016/0950-0618(95)00006-2
  14. Shahawy M.A., Beitelman T., Arockiasamy M., Sowrirajan R. Experimental investigation on structural repair and strengthening of damaged prestressed concrete stabs utilizing externally bonded carbon laminates // Composites Part B: Engineering. 1996. Vol. 27. Issue 3-4. Pp. 217-224. DOI: 10.1016/1359-8368(95)00043-7
  15. Saafi M., Toutanji H. Flexural capacity of prestressed concrete beams reinforced with aramid fiber reinforced polymer (AFRP) rectangular tendons // Construction and Building Materials. 1998. Vol. 12. Issue 5. Pp. 245-249. DOI: 10.1016/s0950-0618(98)00016-6
  16. Xie J., Hu R.-L. Experimental study on rehabilitation of corrosion-damaged reinforced concrete beams with carbon fiber reinforced polymer // Construction and Building Materials. 2012. Vol. 38. Pp. 708-716. DOI: 10.1016/j.conbuildmat.2012.09.023
  17. Zhou Y., Gou M., Zhang F., Zhang S., Wang D. Reinforced concrete beams strengthened with carbon fiber reinforced polymer by friction hybrid bond technique: Experimental investigation // Materials and Design. 2013. Vol. 50. Pp. 130-139. DOI: 10.1016/j.matdes.2013.02.089
  18. Hamed E., Bradford M.A. Flexural time-dependent cracking and post-cracking behaviour of FRP strengthened concrete beams // International Journal of Solids and Structures. 2012. Vol. 49. Issue 13. Pp. 1595-1607. DOI: 10.1016/j.ijsolstr.2012.03.001
  19. Kotynia R. Bond between FRP and concrete in reinforced concrete beams strengthened with near surface mounted and externally bonded reinforcement // Construction and Building Materials. 2012. Vol. 32. Pp. 41-54. DOI: 10.1016/j.conbuildmat.2010.11.104
  20. Esfahani M.R., Kianoush M.R., Moradi A.R. Punching shear strength of interior slab-column connections strengthened with carbon fiber reinforced polymer sheets // Engineering Structures. 2009. Vol. 31. Issue 7. Pp. 1535-1542. DOI: 10.1016/j.engstruct.2009.02.021
  21. Liu Y.W., Cho S.W. Study on application of fiber-reinforced concrete in sluice gates //Construction and Building Materials. 2018. Vol. 176. Pp. 737-746. DOI: 10.1016/j.conbuildmat.2018.05.004
  22. Gholampour A., Ozbakkaloglu T. Behavior of steel fiber-reinforced concrete-filled FRP tube columns: Experimental results and a finite element model // Composite Structures. 2018. Vol. 194. Pp. 252-262. DOI: 10.1016/j.compstruct.2018.03.094
  23. Elgabbas F., Vincent P., Ahmed E.A., Benmokrane B. Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams // Composites Part B: Engineering. 2016. Vol. 91. Pp. 205-218. DOI: 10.1016/j.compositesb.2016.01.045
  24. Zhang F., Chen H., Li X., Li H., Lv T., Zhang W. et al. Experimental study of the mechanical behavior of FRP-reinforced concrete canvas panels // Composite Structures. 2017. Vol. 176. Pp. 608-616. DOI: 10.1016/j.compstruct.2017.05.072
  25. Raoof S.M., Koutas L.N., Bournas D.A. Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams // Construction and Building Materials. 2017. Vol. 151. Pp. 279-291. DOI: 10.1016/j.conbuildmat.2017.05.023
  26. Kustikova Yu.O. Application FRP-rebar in the manufacture of reinforced concrete structures // Procedia Engineering. 2016. Vol. 153. Pp. 361-365. DOI: 10.1016/j.proeng.2016.08.128

Скачать статью

Результаты 1 - 3 из 3