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ABSTRACT

Introduction. An analysis of mathematical models of two-dimensional planned flows was carried out. Such flows are char-
acterized by local depth-averaged velocities and local depths at each point of the flow. The mathematical model formation
of the water flow is based on its division into several sections. There is a section where the flow parameters (velocity, depth,
width) are kept constant at the stage of flow exit from the pipe — the inertial front. The purpose of the article and its relevance
are defined.

Materials and methods. By introducing dimensionless complexes on the basis of m-theorem, the formula for the length of
inertial front of the water flow at its spreading from a rectangular pipe into a wide diverting channel is derived. An analogy
from gas dynamics is used, namely, the transition to the plane of the velocity hodograph. Using the velocity hodograph,
the distribution of depths and velocities of the flow along its longitudinal axis of symmetry and along the extreme line of cur-
rent was obtained. The main computation tasks for the flow parameters have been formulated.

Results. Numerical calculations of the formulated main tasks for determining flow parameters are described. Comparison with
experimental data is given and the adequacy of the refined mathematical model of a two-dimensional planned flow is confirmed.
Conclusions. The resulting formula for the length of the inertial front makes it possible to achieve the desired error in cal-
culating the parameters of the water flow. With flow expansions up to 5, the relative error of the ordinates and flow velocities
does not exceed 7-10 %. Calculation formulas and implemented programs will allow HTS designers to quickly and accu-
rately determine the boundaries, speed and depth of free flow on the culvert.

KEYWORDS: mathematical model, hydrodynamics analysis, two-dimensional water flow, open-channel hydraulics,
analytical solution
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ITapameTrpbl BOAHOIO IIOTOKA HA OCH CHMMETPHUU
U KpaiiHeil JIUHUM TOKA

Ouabra Anexcanaposna bypuesa, Mapus CepreeBHa AjleKcaHIpoBa
FOsicno-Poccutickuil 2ocyoapemeennulii nonumexuuueckuil ynueepcumem (HITH) umenu M. U. [Thamosa
(FOPI'TIY (HIIH) umenu M. H. Ilnamosa), 2. Hosouepkracck, Poccus

AHHOTALUMUA

BBepneHwue. [poBeaeH aHann3 mateMaTn4yecknx Moaener ABYMepPHbIX MNaHOBbIX NMOTOKOB. Takne NOTOKV XapakTepuayloTcs
MECTHbIMW OCPEAHEHHbIMW CKOPOCTAMMW MO FNy6uHE M MECTHbIMU rMybuHamK B Kaxaon Touke noTtoka. PopmupoBaHune
mMaTemMaTV4ecKo MoAenu BOAHOro NMoToka OCHOBAHO Ha €ro pasferieHuy Ha HecKonbKO y4yacTkoB. Ha aTane BbixoAda
noToka 13 TpyObl MMEEeTCs Yy4aCTOK, IAe COXPaHSTCA NOCTOSHHBIMU NapameTpbl NOTOKa (CKOPOCTb, rMy6uHa, WprHa) —
WHEPLIMOHHBIN ppoHT. OnpeaeneHa Lernb CTaTbh 1 ee aKTyanbHOCTb.

Martepuansi u meToabl. BBeaeHnem 6e3pasmepHbix KOMMIIEKCOB U HA OCHOBE TT-TeOpeMbl BbiBeAeHa hopMyna ANvHbI UHep-
LIMOHHOTO hpOHTa BOAHOTO NMOTOKA NPW €ro pacTekaHum M3 NpsiMOYroNbHOM TpyObl B LUMPOKOE OTBOASILLIEE pyCro. Vicnonb3oBaHa
aHanorvs U3 ra3oBov AMHaMUKKM, a UMEHHO nepexop B NOCKOCTk rogorpada ckopocTy notoka. C ucnonb3oBaHneM rogorpada
CKOPOCTMN MOMyYeHbl 3aKOHbI pacnpeneneHns rmybyH 1 CKOpocTel NoToKa BAOMNb €ro NPoAosbHON OCK CUMMETPUN U BAOMb
KpanHeu nmHun Toka. ChopMynmpoBaHbl OCHOBHbIE 3a4a4m pacyeTa napameTpoB MOTOKa.

PesynbTatbl. OnuncaHbl 4ucrnoBble pacyeTbl CEOPMYNMPOBAHHbIX OCHOBHbIX 3aJady OnpefereHns napameTpoB MOTOKa.
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MpPYBOAUTCS CpPaBHEHME C SKCMEPUMEHTaNbHBIMI AaHHBIMU 1 MOATBEPKAAETCS afeKBaTHOCTb YTOYHEHHON MaTeMaTUYecKoi
MOZEsI ABYMEPHOTO MaHOBOrO MOTOKa.

BbiBoabl. [MonyyeHHas gopmyna AnvHbI MHEPLIMOHHOMO (hpOoHTa NO3BOMSET 4OGUTLCS XKenaeMoin NorpeLLHoCTM pacyeTta
napameTpoB BOAHOrO MoToka. [Mpn pacluMpeHmnsix noToka 4o 5 oTHOCUTeNbHas MOrpeLlHOCTL OPAMHAT U CKOPOCTEN NoToKa
He npesbiwaeT 7-10 %. PacyeTHble (DOpMyribl 1 peanim3oBaHHble NPorpamMMbl MO3BOMSAT NpoekTuposLkam MTC BbicTpee
1 TOYHee OMpedenuTb rpaHuLibl, CKOPOCTb U rMy6uHy Ge3HanopHOro NoToka Hag BOAOMPONYCKHOM TpyGOoiA.

KIMKOYEBDLIE CJIOBA: matematnyeckasi Modenb, rMOPOAMHAMUYECKUA aHanu3, ABYMEPHbIA MOTOK BOAbI, rMApaBrvka
OTKPbITOrO KaHana, aHanMTU4eckoe pelleHne

BrnazodapHocmu. ABTOPbI BblpaxatoT bnarogapHocTb A.T.H., npodeccopy KOxHO-Poccuiickoro rocygapCTBEHHOrO NonmTex-
Huyeckoro yHusepcuteta (HIMA) nmenn M.N. MnatoBa Buktopy Hukonaesndy KoxaHeHko 3a psig 3aMeyaHun, KoTopble
B AanbHeiiwem 6binn ycTpaHeHbl. ABTOpbI OyAyT NpusHaTenbHbl peLeH3eHTaMm 3a 3aMedaHunsi U COBETbI, KOTOpble NMOMOryT
YNYYLWWTb CTaTblo, TEM CaMbIM MOBbLICUTb €€ YPOBEHb.

onAa UMTUPOBAHUA: Bypuesa O.A., AnekcaHOposa M.C. Water flow parameters on the symmetry axis and extreme

current line // BectHuk MI'CY. 2023. T. 18. Bbin. 8. C. 1262—1271. DOI: 10.22227/1997-0935.2023.8.1262-1271

Aesmop, omeemcmeeHHbIl 3a nepenucky: Onbra AnekcaHgposHa bypuesa, kuzinaolga@yandex.ru.

INTRODUCTION

The subject of research is open stationary water
flows behind an unpressurised opening of rectangular
cross-section, with a small vertical velocity component,
namely, two-dimensional planar flows. The theory and
methods for solving problems of planar hydraulics are
most fully described in monographs by G.I. Sukhomel,
LI Levi and I.A. Sherenkov [1], B.T. Emtsev [2] and
V.N. Kokhanenko [3].

Often, when designing hydraulic structures, it is
necessary to know the characteristics of open water
flows, for which the Froude criterion is greater than one.
These streams are: with free spreading of the flow from
open channels or free-flow pipes into a wide channel;
during the flow of flows in the connections of channels
of different widths; in open spillways behind hydroelec-
tric power plants; in case of river floods behind culvert
road structures; behind small bridges. According to
the nature of the flow of a turbulent water flow through
a non-pressure pipe, non-pressure and semi-pressure
flow regimes are considered.

Open water flow in a suddenly opening channel
can have velocities substantially exceeding the permis-
sible velocities for the unstrengthened part of the channel.
As shown by field surveys conducted by the authors [1, 4],
the main cause of destruction of hydraulic structures is
dangerous erosion of the downstream. Therefore, to cal-
culate the anchorage of the outlet channel, hydraulic engi-
neering structures designers need information on the flow
parameters in the vicinity of the outlet edge of the pipe.
Therefore, the relevance of this work is confirmed.

A water flow model behind an unconfined outlet
has several sections [3—8]. In works [3-21] the parame-
ters and shape of free-diffusion region of turbulent flow
at its outflow from unpressurized pipe into wide diver-
sionary channel is determined experimentally and ana-
lytically. In [22, 23] a formula for inertial front length
of flow at the tube outlet is given. However, there is no
sufficient justification for this formula.

The purpose of this paper is to derive the formula
for the inertial front length on the basis of dimension

theory and m-theorem, as well as testing its appropriate-
ness in calculating the parameters of water flows.

MATERIALS AND METHODS

There are basic units of measurement in any sys-
tem of units. They are introduced from experience with
the help of standards. In the SI, for example, the basic
units are the meter, the second, and the kilogramme.
The expression of an arbitrary unit of measurement in
the basic units is called the dimensionality. For each ba-
sic unit, a notation is introduced: L is length, 7 is time,
M is mass, etc. The theory of dimensionality proves
[24, 25], that the dimension of any quantity is a degree
monomial of the form [N]=L'- T" - M™ ... and is called
the dimension formula. The statement sought follows
from the fact that the ratio of two numerical values
of a physical quantity should not depend on the choice
of scales for the basic units of measurement.

n-theorem. A relation, independent of the choice
of units, between n dimensional quantities, k& of which
have independent dimensions, can be represented as
a relation between (n—k) quantities which are dimen-
sionless combinations of n dimensional quantities.

Formula for the length of the inertial front as it flows
from a rectangular pipe into a wide diversion channel. Let
us consider the problem of deriving a formula for the length
of the inertial front X, . The need to derive the formula
is justified by the fact that along the inertial front all flow
parameters retain their values. Hence, the formulas [3, 5] for
calculating the flow parameters will change.

The process of free flowing of supercritical uncon-
fined potential flow into a wide diversionary channel is
determined by four parameters with:

 culvert width b, cm;

* depth of flow in the pipe 4, cm;

* initial velocity of the flow ¥, cm/s;

* free fall acceleration g =981, cm/s?.

We introduce dimensionless complexes characte-

rizing the spreading process:
Xp h_O; ﬂ) F, = V_02
b H, gh,

> Ymax ?

where
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()

the constant in D. Bernoulli’s integral, 6 (radian) is
an angle characterizing the slope of the velocity vector to
the longitudinal axis of flow symmetry; F, =21, /(1-1, ).

Froude’s criterion and the square of the velocity coefficient
1, =V, [2gH,, 0__is the maximum flow angle.

Thus, the number of independent units is k£ = 2,
the dimensional quantities » = 4. The number of inde-
pendent dimensionless complexes is n — k= 2, and there
is a single equation linking these complexes.

To derive the structure of the formula X, we use
formula (1) in the form:

vy H, F
Hy=h|—"+1|=>—"="+1>
2gh, ho 2

hy 2
H, F,+2

Assume that X, is proportional to X*. From
Figure shows that:

b/2
AR
where we get
X' b/2 ’
tga,

where o, is the wave angle [3] defined by the expression:

a, = arcsin

1
N

A
\ 4
N

b/2

To determine the initial abscissa of the flow

Next, we will prove that X oc 4, /b and X[ oc X" 1.
It’s obvious that:

1
sinf ..

I
X oc

! The sign « denotes the proportionality of the quantities.
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Consider the fall time of the water and the time
of its inertial motion. Let ;= 10 cm, ¥/, = 100 cm/s,
X! =4 cm, then the free fall time of a liquid particle
from a height of 4, will take the form:

Ly :\/2—7": f&:\/I:O.MS S,
g 1,000 50
and the time of inertia travel 7, = X, /V, = 4/100 = 0.04 s.
The inertia time of a water particle is 4 times shorter
than its fall time. Thus, the water, before it has time
to fly away, comes out of the pipe as a jet. Therefore,
the greater the depth of the flow, the greater the length
of the inertial front, i.e. X; oc iy/b,and X[ oc by /H,.
From the triangle ABC can be written (see Figure):

* . 1 1
Xl oc X' = , sino, =—, tgo, = ,
? 2tgay, ' \/Fo s £y -1
then [3]:
X byF,-1
2

Let the initial abscissa of the flow X* be directly
proportional to the length of the inertial front X, and
also directly proportional to the flow depth /, and in-
versely proportional to sin0__ :

byJF, -1
X N ol
2 H,
h 1
X oo 2L, X] o ,
PUp TP sind,

we get the structure of the formula:

. bJF -1 1
Xh~rN 0

2 sin@,

ok N1 2
bH, " 2 sing, (F+2)

Whence can be written:

D

h,  F,+2sinf,

X, JR-1 1
—C

As aresult of regression analysis applied to the experi-
mental data, the authors obtained a formula for the length
of the inertial front of the flow when it spreads from a rectan-
gular tube into a wide diversionary channel in the form of:

JF, -1
Xé:trun{ 0 ! h0}+1,

F,+2 sinf
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which is verified by experiment. Here “1” is taken in
length units: for the experiment, it is a centimeter, for
nature calculations it is a meter.

Determination the distribution law of the depth
and velocity along its longitudinal symmetry axis.
The dynamic equations of motion of a two-dimensional
open flow are obtained from the equations of L.
Euler, supplementing them with terms that take into
account the resistance forces. Complications also
arise when taking into account the slope of the bottom
of the conduit, i.e. the need to take into account
the influence of gravity. As a result, the system
of equations of motion and continuity of the flow form
a system of essentially non-linear partial differential
equations, the analytical solution of which has not been
found so far.

The study of the flow equations begins with
the simplest case.

Where in:

* resistance forces are neglected (it is true for
supercritical flows passing through a narrowing, or
an expansion, or a bend in the channel, since in these cas-
es, inertial forces have a predominant effect on the flow);

* movement is considered potential;

* the bottom of the flow is assumed to be
horizontal.

In this case, the equations of motion of a two-di-
mensional supercritical flow turn out to be similar to
the equations of plane gas motion at supersonic speeds.
Therefore, many known results of gas dynamics can be
applied to supercritical flows [2]. Let’s use the known
method of S.A. Chaplygin to move to the velocity hodo-
graph plane, that is, we pass from the coordinates in
the plane to the variables of the velocity vector and its
angle of inclination to the axis of symmetry of the flow.
In this case, the nonlinear system of equations is re-
duced to a linear system of equations in partial deriva-
tives, which greatly facilitates its study.

Using the velocity hodograph plane [2, 3], a dif-
ferential complex relation between the flow plan and
the velocity hodograph plane can be established in
the form of a generalizing relationship between the con-
jugate velocity and the derivative of the complex poten-
tial along the coordinate [3]:

dz = dx +idy = (d@ + i%‘)dwj%e"e, Q)

where 0 is the angle characterizing the direction
of the velocity vector to the axis Ox; V is the modulus
of the liquid particle velocity vector.

The main system of planned equations of motion
for stationary, potential water flows without taking into

account the internal friction of the flow and its friction
against the channel has the form*3 [2, 3, 22]:

9 _  h 1-3t y
o 2H, t(1-1)’ 00’
3
d0_2h 1 oy ®
80 H,l-tor

One of the solutions to system (3) are the stream
functions and the potential function of the form:

A

=——sinb;

v " .
hy  cosb )

(P:A_W—
H,tv"(1-7)

Assuming along the streamline dy = 0, and taking
into account that on the axis of symmetry of the flow
6 = 0 taking into account (2) and (4), we obtain an ordi-
nary differential equation relating dx, dt:

Ah, (3t-1)
dx = 2 2
2H\2gH, T (1-1)

# (5)

where indicated 4= Vob/Z sin _ — constant for
the entire flow; 1 is the parameter of the flow kinetics.

Integration of equation (5) taking into account
the initial conditions x = X, + X, 1= 7, allows you to
get a dependency of the form:

. Ah,
X=X 4+ X +———x
2H,\J2gH,
(6)
I+1 -1 1+1, -1,
X —In - +In
1(1-1) T 1, (1-1) 1,

The values of the flow velocity and its depth are
found by the formulas [6]:

= fTfiye;

h,=H,(1-1).

(N

The following problems [22, 23] can be solved
using the formula (6).

Problem 1. By setting the kinetics parameter
on the flow symmetry axis, the abscissa of this point
on the symmetry axis, counting from the edge of the pipe,
can be determined, then the depth at this point and
the flow velocity can be found.

Problem 2. By setting the abscissa of a point
on the longitudinal axis of flow symmetry, the kinetic

2 Certificate of state registration of computer programs No. 2022618552. Determination of Parameters of a Freely Spreading

Flow. Burtseva O.A. et al. 05.12.2022.

3 Certificate of state registration of computer programs No. 2022666655. Determination of Flow Parameters Along the Extreme

Current Line. Aleksandrova M.S. 08.29.2022.

1265

£Z0Z ‘g 9Nss| "gL 2wnjo/ . 8In}08}IYdJy PUB UOI}ONJISUOD UO [BuInOf AJYIUOI « NSSIN MIUISOA
€20z ‘g ¥ohuiag gL woL . (8UluO) 0099-70£Z NSSI (1uld) GE60-2661 NSSI » ADJIN dMHLODg



BectHuk MI'CY - ISSN 1997-0935 (Print) ISSN 2304-6600 (Online) « Tom 18. Beinyck 8, 2023

Vestnik MGSU - Monthly Journal on Construction and Architecture « Volume 18. Issue 8, 2023

Olga A. Burtseva, Maria S. Aleksandrova

parameter can be found from equation (5), and further,
the flow velocity and depth at that point can be deter-
mined.

Problem 3. By setting the flow depth, it is possible
to determine the flow velocity, the kinetics parameter,
and then from equation (5) the abscissa of this point
on the symmetry axis, counting from the pipe edge.

The set tasks are implemented as separate blocks
in MathCad environment®.

Specifying the distribution law of the flow param-
eters along the outermost current line. To determine
the coordinates of the outermost current line, the cou-
pling equation between the physical flow plane and
the velocity hodograph plane (2) is used.

For the current and potential functions from equa-
tion (2), taking into account solution (4), we obtain
a system of differential equations that is valid along
the outermost flow line [3]:

doe— Ah,cos® N
2H 1" \2¢H,
“ (1—31:)2 col/szG der T 51229 @,
2t1(l-1)° 1 1-11
o Amsind ®)
g 2H 1" \2gH,
o (1—31)2 C()l/szedt+ T 812260’9 .
21(1-1)° 1 -1t

A long the outermost flow line the dependence is
valid [3, 12]:

sinf .
=sinf

1/2 max * (9)

Since along the outermost flow line dy = 0, then

from the first equation of the system (4) we obtain
the connection between the parameters:

cos 0d0 :1/2sin9ﬂ. (10)
T

Equation (10), taking into account dependence (9),
is reduced to the form:

cos 00 = 1/2£sin 0,
T

1/2

Taking into account the transformations made above,
we transform the system of equations (7) to the form:

Ah, 3t-1  2sin’0,,,
X = 2 2 2 T
2H,\J2gH, [T (1-1) (1-1)

Ah 0 (1
dy = - d|: 1/‘2305 :|
Hy\J2gH, [T (1-7)
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Integration of system (11) allows one to obtain
the parametric equations of the outermost flow line in
the form [3]:

x4 Ah, I+t 2sin’f
21, oy | 1-1)

max

1-1

l+1,  2sin’0 1
—In—-— + 2% +1n
ot (l-t) -1, T,
b Ah,sin’0,

=—+

2 Hy\2gH,

-1,

}dr, (12)

cosb  cosf,
21— -t |

y

System of equations (12) at known parameters 0,
and t, [3] at the corner point of the outlet edge pipe
of the outermost flow line allows to determine the co-
ordinates of the very point X, Y of an arbitrary point
of the outermost flow line.

Using the system of equations (12) the following
problems can be solved.

Problem 4. On the equipotentiality, the kinetic flow
parameters and the angle of inclination of the flow ve-
locity vector to the longitudinal axis of symmetry have
the same value. By setting the parameter t_ at the point
W on the flow symmetry axis, it is possible to determine
the parameters t_, 0. of the point C at the outermost
flow line and then the coordinates x,., y,. of this point.
And further changing the parameter 7, we obtain a set
of points outermost flow line.

Problem 5. Assuming in the first equation
of the system (12) x = x_, we determine the kinetic pa-
rameter 1. at the point C of the flow at the outermost
flow line and then the angle of the velocity vector to
the longitudinal axis of symmetry of the flow 0, at this
point. Substituting the found flux kineticity into the sec-
ond equation of the system (12), we determine the ordi-
nate of the outermost flow line y .

Thus, given a flow extension B, = V /b, it is pos-
sible to estimate the distance mismatch for a selected
flow cross-section.

The authors of this study are actively pursuing re-
search in this area, improving and refining the proposed
algorithms.

RESULTS

Let us consider the tasks. Experimental data
on the free spreading of the flow behind a rectangular
culvert are borrowed from [3], where the experimental
setup, flow measuring instruments, other details of the ex-
periment are described in detail, see Table 1. The article
presents only the results of a numerical calculation using
the developed programs? >,

The flow has the following characteristics:

* initial flow velocity ¥ = 147.654 cm/s;

* initial flow depth relative to the bottom /2, = 9.27 cm;

* acceleration of gravity g =981 cm/s?,

* pipe width b =16 cm.
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Table 1. Point characteristics of free spreading of the plan
flow

X, cm 4 24 44 64 71

Y,, cm 9.5 38 59 76 80

h, cm 8.5 2.66 1.54 1.12 1.09

V,cm/s | 151.928 | 186.461 | 191.243 | 192.714 | 191.49
Next we find:

* Froude’s number F = 2.397;

* hydrodynamic pressure /7, = 20.382 cm;

* initial flow kinetics t, = 0.545;

« inertial front length X, =3 cm;

* wave angle at a point M, a,,= 0.702 r or o, = 40°23".

1. Let us set a kinetic parameter on flow symmetry
axis, dividing segment [, 1] into equal parts in incre-
ments At =4.548 - 107. Then we calculate the abscissa
on the symmetry axis corresponding to the value of ki-
netic flow according to formula (6). Then we determine
flow velocities and depths at the corresponding point.
The results are given in Table 2. For the sake of conve-
nience, the data for points where abscissa are close to
experimental values are given.

Table 2. Determination of the abscissa on the longitudinal axis
of the flow according to a given value of the kinetic parameter

nusrtrf‘ti)er T, X, cm V, cm/s h, cm
70 0.8364 24.477 185.831 2.772
83 0.923 43.493 192.087 1.569
89 0.95 66.978 194.907 1.121
90 0.955 73.612 195.373 1.019

2. In order to determine the kinetic parameter
of the flow, let us set an abscissa on its longitudinal axis
with the least deviation with experimental data, for in-
stance 4 cm step. Solving equation (6), we find the only
root corresponding to the kinetic parameter at the point
on the longitudinal axis of the stream with given abscis-
sa. Then we find the velocity and the depth of the flow
at the given point. The results of the problem solution
are given in Table 3.

3. The depth of flow 4 we set, using the calculations
in problem 2. The kinetic parameter is determined from
formula (7). Then we find abscissa on flow symmetry axis
corresponding to this kinetic parameter from equation (6),

Table 3. Determination of the kinetic parameter for a given

abscissa
nl?rtrfger T, X, cm V, cm/s h, cm
6 0.861 24 185.548 2.834
11 0.924 44 192.179 1.558
16 0.948 64 194.664 1.068
18 0.953 72 195.267 0.948

then find flow velocity. The results of the problem solu-
tion are given in Table 4. For the convenience of analysis,
the data at the same points as in Table 3 are given.

It should be noted that there is no discrepancy
between the calculated data in Table 3 and Table 4. This
is due to the fact that the calculation is performed using
analytical relationships.

Table 4. Definitions of the kinetic parameter, point abscissa
and flow velocity on the axis of symmetry for a given flow
depth

nfrflﬁ))er T, X, cm V, cm/s h, cm
6 0.861 24 185.548 2.834
11 0.924 44 192.179 1.558
16 0.948 64 194.664 1.068
18 0.953 72 195.267 0.948

4. Now let us consider the determination of flow
parameters along the outermost flow line. From the sec-
ond equation of system (4) it is seen that an equipotential
can be singled out by a specific value of the parameter
T on the flow symmetry axis. By setting the parameter
1, for the point M (Figure) on the flow symmetry axis,
we determine the parameters 7, 0, followed by the co-
ordinates x ., y.. of the point C on the outermost flow line
corresponding to this equipotentiality. Then by chang-
ing the kinetic parameter (e.g. with a constant step) we
obtain the set of points of the outermost flow line.

5. Assuming in the first equation of the system (12)
x = x_, we determine the kinetic parameter 7. at the point
C of the flow at the outermost flow line and then the an-
gle of the velocity vector to the longitudinal axis of sym-
metry of the flow 0, at this point. Substituting the found
flux kineticity into the second equation of the system
(12), let us determine the ordinate of the outermost flow
line y... The results coincide with the numerical experi-
ment described in the previous paragraph.

The numerical experiment consisted in calculating
the values of the kinetic parameter, the angle of inclina-
tion of the flow velocity vector to the symmetry axis
and the coordinates of the points on the outermost flow
line. The results are given in Table 5. In order to de-
termine the adequacy of the parameter calculation al-
gorithm, a relative error of the flow ordinate has been
calculated in comparison with experimental data.

CONCLUSIONS

The formation of a mathematical model of water
flow is based on its division into several sections. At
the stage of flow exit from the pipe there is a section
where flow parameters (velocity, depth, width) are kept
constant — inertial front. The formula of the inertial
front length of the water stream has been derived at
its spread from a rectangular pipe into a wide outlet
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Table 5. Definitions of the kinetic parameter, the angle of inclination of the flow velocity vector to the axis of symmetry, and
the ordinate of points on the extreme streamline according to the given kinetic parameters on the axis of symmetry of the flow

0 0 0.545 0.545 0.661 8 0
4 0.545 0.731 0.791 8.97 5914
6 24 0.861 0.952 0.946 34.926 9.854
11 44 0.924 0.975 0.963 63.3 6.241
16 64 0.948 0.983 0.969 92.257 17.275
18 72 0.953 0.985 0.97 103.922 22.729

channel by introducing dimensionless complexes and
on the base of n-theorem.

Obtained formula for the length of the inertial
front, allows us to achieve the desired error. At flow
extensions up to 5, relative errors of ordinates and flow
velocities do not exceed 7-10 %. At steps 16 and 18
the error is more than 10 %. This can be explained by
the fact that these points are close to the transition zone.
This area should be investigated further.

Using analogies from gas dynamics, namely
the transition to the flow velocity hodograph plane, it
is possible to obtain the depth and velocity distribu-
tion laws along the longitudinal axis of symmetry and
along the outermost flow line. With the help of sys-
tem of equations (12) set tasks have been successfully
solved. Software has been developed for realization
of these algorithms. On the basis of experimental data,
the adequacy of the refined mathematical model of two-
dimensional planar flow has been proved.
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