Preview

Vestnik MGSU

Advanced search

Using anthropogenic raw materials in the process of synthesizing foam glass with heterogeneous microstructure

https://doi.org/10.22227/1997-0935.2024.2.258-269

Abstract

Introduction. Thermal insulation materials, including foam glass, are used to reduce heat losses in buildings. Foam glass has low thermal conductivity, high strength and environmental safety. Researches of scientists, including I.I. Kitaygorodsky and B.K. Demidovich, are aimed at controlling the process of foam glass synthesis and regulating the crystallization process. The cost reduction of foam glass is possible through the utilization of industrial waste.

Materials and methods. The potential for reusing and obtaining foam glass is being studied using ash and slag waste from a power station in the Rostov region. The study of foam glass batch mixture includes preparation of raw materials, molding and firing. The research of the structure was conducted using an automatic diffractometer, micro-tomograph, and scanning electron microscope. Tests were carried out to assess the properties of foam glass specimens, such as thermal conducti-vity, strength, density, and load impact. The composition of raw materials for foam glass include broken glass, ash and slag mixture and Na2B4O7·10H2O. Foam glass synthesis was performed using anthracite, zirconium dioxide, chromium oxide, and magnesium oxide.

Results. The research revealed the formation of crystalline phases in the amorphous foam glass framework. The presence of quartz, pyroxene, cristobalite, eskolaite, and wollastonite in foam glass composition was confirmed.

Conclusions. Batch compositions and synthesis parameters were developed, leading to the production of nine modifications of foam glass with uniform porous structure and varying content of crystalline phases. Crystalline inclusions are evenly distributed. The role of crystallization centres is played by the crystalline phases present in the raw materials (in the composition of ash-and-slag mixture) and additional crystallization initiators (chromium oxide, zirconium dioxide and magnesium oxide). The conformity of foam glass properties to standard requirements was demonstrated.

About the Authors

S. V. Fedosov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Sergey V. Fedosov — Doctor of Technical Sciences, Professor of the Department of Technology and Organization of Construction Production, Academician RAASN

26 Yaroslavskoe shosse, Moscow, 129337

ID RSCI: 105900, Scopus: 7005670404, ResearcherID: B-2409-2017



M. O. Bakanov
Ivanovo Fire Rescue Academy of State Firefighting Service of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters (IFRA of SFS of EMERCOM of Russia)
Russian Federation

Maksim O. Bakanov — Doctor of Technical Sciences, Associate Professor, Head of the educational and scientific complex “Fire Extinguishing”, Advisor to RAASN

33 Stroiteley ave., Ivanovo, 153040

ID RSCI: 802943, Scopus: 57204434215, ResearcherID: O-1809-2017



I. S. Grushko
M.I. Platov South-Russian State Polytechnic University (NPI) (SRSPU (NPI))
Russian Federation

Irina S. Grushko — Candidate of Technical Sciences, Associate Professor of the Department of Industrial, Civil Engineering, Geotechnical and Foundation Engineering

132 Prosvescheniya st., Novocherkassk, 346428

ID RSCI: 562201, Scopus: 35519681000, ResearcherID: A-3310-2014



References

1. Kitajgorodskij I.I., Keshishyan T.N. Foam glass. Moscow, Promstroyizdat, 1953; 80. (rus.).

2. Demidovich B.K. Production and application of foam glass. Minsk, Science and Technology, 1972; 301. (rus.).

3. Manevich V.E., Subbotin K.Yu. Foam glass and problems of energy conservation. Glass and Ceramics. 2008; 65(3-4):105-108. DOI: 10.1007/s10717-008-9026-1

4. Ketov A.A., Konev A.B., Puzanov I.S., Saulin D.V. Trends in the development of foam glass technology. Construction Materials. 2007; 9:17-20. EDN IBEQAZ. (rus.).

5. Min’ko N.I., Puchka O.V. Main directions of development of technology for the production and use of foam glass. Construction Materials. 2007; 5:97-100. EDN HZZITZ. (rus.).

6. Spiridonov Y.A., Orlova L.A. Problems of foam glass production. Glass and Ceramics. 2003; 60(9/10):313-314. DOI: 10.1023/B:GLAC.0000008234.79970.2c

7. Ketov A.A. Nanotechnologies in the production of new generation foam glass materials. Nanotechnologies in Construction: Scientific Internet journal. 2009; 1(3):15-23. EDN KYVQAD. (rus.).

8. Damdinova D.R., Hardaev P.K., Karpov B.A., Zonhiev M.M. Technological methods for producing foam glass with an adjustable pore structure. Construction Materials. 2007; 3:68-70. EDN HZITJV. (rus.).

9. Shelkovnikova T.I., Baranov E.V. Study of the in-fluence of thermal factors on the process of formation of the structure of foam glass. Refractories and Technical Ceramics. 2006; 10:21-24. EDN NUXDCN. (rus.).

10. Kaz’mina O.V., Vereshchagin V.I., Abiyaka A.N., Mukhortova A.V., Popletneva Yu.V. Temperature regimes for obtaining granular material for foamed crystal glass materials as a function of the batch composition. Glass and Ceramics. 2009; 66(5-6):179-182. DOI: 10.1007/s10717-009-9160-4

11. Kaz’mina O.V., Vereshchagin V.I., Abiyaka A.N. Assessment of the compositions and components for obtaining foam-glass-crystalline materials from aluminosilicate initial materials. Glass and Ceramics. 2009; 66(3-4):82-85. DOI: 10.1007/s10717-009-9133-7

12. Shutov A.I., Yashurkaeva L.I., Alekseev S.V., Yashurkaev T.V. Study of the structure of foam glass with different characteristics. Glass and Ceramics. 2007; 64(9-10):297-299. DOI: 10.1007/s10717-007-0074-8

13. Fedosov S.V., Bakanov M.O. Using network modelling methods to improve the foam glass production technology. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2022; 17(11):1551-1563. DOI: 10.22227/1997-0935.2022.11.1551-1563. EDN LSLSDF. (rus.).

14. Fedosov S.V., Bakanov M.O. Foam glass: characteristics of production, modeling of heat transfer and gas. Academia. Architecture and Construction. 2015; 1:108-113. EDN TLLYXB. (rus.).

15. Sha B., Xiong H., Zheng H., Yuan K., Wen M., Zhang Y. Analysis of the temperature field and deformation characteristics of foam glass thermal insulating decorative integrated board system. Case Studies in Thermal Engineering. 2022; 38:102299. DOI: 10.1016/j.csite.2022.102299

16. Méar F.O., Podor R., Lautru J., Genty S., Lebullenger R. Effect of the process atmosphere on glass foam synthesis: A high-temperature environmental scanning electron microscopy (HT-ESEM) study. Ceramics International. 2021; 47(18):26042-26049. DOI: 10.1016/j.ceramint.2021.06.010

17. König J., Petersen R.R., Iversen N., Yue Y. Application of foaming agent–oxidizing agent couples to foamed-glass formation. Journal of Non-Crystalline Solids. 2021; 553:120469. DOI: 10.1016/j.jnoncrysol.2020.120469

18. Song H., Chai C., Zhao Z., Wei L., Wu H., Cheng F. Experimental study on foam glass prepared by hydrothermal hot pressing-calcination technique using waste glass and fly ash. Ceramics International. 2021; 47(20):28603-28613. DOI: 10.1016/j.ceramint.2021.07.019

19. König J., Lopez-Gil A., Cimavilla-Roman P., Rodriguez-Perez M.A., Petersen R.R., Østergaard M.B. et al. Synthesis and properties of open- and closed-porous foamed glass with a low density. Construction and Building Materials. 2020; 247:118574. DOI: 10.1016/j.conbuildmat.2020.118574

20. König J., Nemanič V., Žumer M., Petersen R.R., Østergaard M.B., Yue Y. et al. Evaluation of the contributions to the effective thermal conductivity of an open-porous-type foamed glass. Construction and Building Materials. 2019; 214:337-343. DOI: 10.1016/j.conbuildmat.2019.04.109

21. Couto da Silva R., Neves Puglieri F., Maria de Genaro Chiroli D., Antonio Bartmeyer G., Toniolo Kubaski E., Mazurek Tebcherani S. Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents. Science of the Total Environment. 2021; 771:145276. DOI: 10.1016/j.scitotenv.2021.145276

22. Li J., Zhuang X., Monfort E., Querol X., Llaudis A.S., Font O. et al. Utilization of coal fly ash from a Chinese power plant for manufacturing highly insulating foam glass: Implications of physical, mechanical properties and environmental features. Construction and Building Materials. 2018; 175:64-76. DOI: 10.1016/j.conbuildmat.2018.04.158

23. König J., Petersen R.R., Iversen N., Yue Y. Suppressing the effect of cullet composition on the formation and properties of foamed glass. Ceramics International. 2018; 44(10):11143-11150. DOI: 10.1016/j.ceramint.2018.03.130

24. Østergaard M.B., Cai B., Petersen R.R., König J., Lee P.D., Yue Y. Impact of pore structure on the thermal conductivity of glass foams. Materials Letters. 2019; 250:72-74. DOI: 10.1016/j.matlet.2019.04.106

25. Østergaard M.B., Petersen R.R., König J., Bockowski M., Yue Y. Impact of gas composition on thermal conductivity of glass foams prepared via high-pressure sintering. Journal of Non-Crystalline Solids: X. 2019; 1:100014. DOI: 10.1016/j.nocx.2019.100014

26. Østergaard M.B., Zhang M., Shen X., Peter-sen R.R., König J., Lee P.D. et al. High-speed synchrotron X-ray imaging of glass foaming and thermal conductivity simulation. Acta Materialia. 2020; 189:85-92. DOI: 10.1016/j.actamat.2020.02.060

27. Ewais E.M.M., Attia M.A.A., El-Amir A.A.M., Elshenway A.M.H., Fend T. Optimal conditions and significant factors for fabrication of soda lime glass foam from industrial waste using nano AlN. Journal of Alloys and Compounds. 2018; 747:408-415. DOI: 10.1016/j.jallcom.2018.03.039

28. Fang X., Li Q., Yang T., Li Z., Zhu Y. Preparation and characterization of glass foams for artificial floating island from waste glass and Li2CO3. Construction and Building Materials. 2017; 134:358-363. DOI: 10.1016/j.conbuildmat.2016.12.048

29. Petersen R.R., König J., Iversen N., Østergaard M.B., Yue Y. The foaming mechanism of glass foams prepared from the mixture of Mn3O4, carbon and CRT panel glass. Ceramics International. 2021; 47(2):2839-2847. DOI: 10.1016/j.ceramint.2020.09.138

30. Souza M.T., Maia B.G.O., Teixeira L.B., de Oliveira K.G., Teixeira A.H.B., Novaes de Oliveira A.P. Glass foams produced from glass bottles and egg-shell wastes. Process Safety and Environmental Protection. 2017; 111:60-64. DOI: 10.1016/j.psep.2017.06.011

31. Taurino R., Lancellotti I., Barbieri L., Leonelli C. Glass-ceramic foams from borosilicate glass waste. International Journal of Applied Glass Science. 2014; 5(2):136-145. DOI: 10.1111/ijag.12069

32. Grushko I.S. The effect of technological additives on the structure of foam glass. Construction Materials. 2022; 4:44-49. DOI: 10.31659/0585-430X-2022-801-4-44-48. EDN MDHJFU. (rus.).


Review

For citations:


Fedosov S.V., Bakanov M.O., Grushko I.S. Using anthropogenic raw materials in the process of synthesizing foam glass with heterogeneous microstructure. Vestnik MGSU. 2024;19(2):258-269. (In Russ.) https://doi.org/10.22227/1997-0935.2024.2.258-269

Views: 187


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)