Preview

Vestnik MGSU

Advanced search

Gypsum-cement-puzzolanic concrete for 3D CP

https://doi.org/10.22227/1997-0935.2024.4.580-595

Abstract

Introduction. 3D concrete printing (3DCP), carried out with concrete and mortar mixtures based on mineral binders, including hybrid mixtures, is one of the promising methods for the concrete products industry. The analysis of the current state of research in the field of development of composite materials based on gypsum-cement-pozzolanic binder for 3DCP indicates the limitations of its use due to the short setting time of gypsum, as well as low water resistance and tensile strength of products based on it, which indicates the relevance of research, aimed at developing stable compositions of gypsum-cement-pozzolanic concrete for 3DCP, with high physical, technical and optimal rheotechnological characteristics.

Materials and methods. The production of specimens was carried out on construction 3D printer “AMT S-6044” produced by “SPETSAVIA” LLC. Standard methods for studying rheological properties, physical and technical properties of concrete were applied.

Results. The composition of gypsum-cement-pozzolanic concrete (GCPC) in 3DCP was theoretically substantiated and experimentally determined. Rational application of concrete with binder: aggregate ratio = 1:2, sand fineness modulus of Mk 3, providing the following characteristics of the control concrete composition: compressive strength — 22.1 MPa, bending strength — 4.9 MPa, average density — 1,892 kg/m3, dimensional stability 16 cm, ultimate shear stress 58.5 Pa was substantiated in 3DCP. The peculiarities of structure formation and some drawbacks of microstructure of the developed gypsum-cement-pozzolanic concrete formed by the additive manufacturing method were studied.

Conclusions. Gypsum-cement-pozzolanic concretes were developed for 3DCP with an optimal ratio of components in the binder composition. The prospects for further improvement of GCPC compositions by modifying them with multifunctional complex additives were shown.

About the Authors

R. Z. Rakhimov
Kazan State University of Architecture and Engineering (KSUAE)
Russian Federation

Ravil Z. Rakhimov — Doctor of Technical Sciences, Professor, Advisor to the Rector’s Office, Corresponding Member of the RAASN

1 Zelenaya st., Kazan, 420043, Republic of Tatarstan

ID RSCI: 612876, Scopus: 7005848197, ResearcherID: AAG-2224-2019



R. Kh. Mukhametrakhimov
Kazan State University of Architecture and Engineering (KSUAE)
Russian Federation

Rustem Kh. Mukhametrakhimov — Candidate of Technical Sciences, Associate Professor of the Department of Construction Production Technologies

1 Zelenaya st., Kazan, 420043, Republic of Tatarstan

ID RSCI: 616214, Scopus: 57194452261, ResearcherID: N-9429-2016



A. R. Galautdinov
Kazan State University of Architecture and Engineering (KSUAE)
Russian Federation

Albert R. Galautdinov — Candidate of Technical Sciences, Associate Professor of the Department of Construction Production Technologies

1 Zelenaya st., Kazan, 420043, Republic of Tatarstan

D RSCI: 836160, Scopus: 57194458273, ResearcherID: G-6938-2018



L. V. Ziganshina
Kazan State University of Architecture and Engineering (KSUAE)
Russian Federation

Liliya V. Ziganshina — Candidate of Technical Sciences, Senior Researcher at the Department of Construction Production Technologies

1 Zelenaya st., Kazan, 420043, Republic of Tatarstan

Scopus: 57194444416, ResearcherID: AAG-9477-2020



References

1. Rakhimov R.Z., Rakhimova N.R. History of science and technology : textbook. St. Petersburg, Lan’ Publ., 2022; 528. (rus.).

2. Rakhimov R.Z., Rakhimova N.R. History of composite mineral binders : textbook. St. Petersburg, Lan’ Publ., 2023; 268. (rus.).

3. Khakimov F.M. Concrete on gypsum anhydride cement. Proceedings of the Kazan Institute of Communal Construction. 1936. (rus.).

4. Rakhimov R.Z., Khaliullin M.I. State and trends in the development of the gypsum construction materials industry. Construction Materials. 2010; 12:44-46. EDN NQTZQF. (rus.).

5. Altykis M.G., Rakhimov R.Z. Gips. Construction materials and products : textbook. Kazan, KISI, 1994; 107. (rus.).

6. Khaliullin M., Rakhimov R., Faizrakhmanov I. The influence of thermally activated clay additives on the properties of composite gypsum binder. ZKG International. 2017; 70(5):58-63. EDN XNKKCU.

7. Chen Y., Figueiredo S.C., Li Z., Chang Z., Jansen K., Çopuroğlu O. et al. Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cement and Concrete Research. 2020; 132:106040. DOI: 10.1016/j.cemconres.2020.106040

8. Muthukrishnan S., Ramakrishnan S., Sanjayan J. Effect of microwave heating on interlayer bonding and buildability of geopolymer 3D concrete printing. Construction and Building Materials. 2020; 265:120786. DOI: 10.1016/j.conbuildmat.2020.120786

9. Chen Y., Jansen K., Zhang H., Rodriguez C.R., Gan Y., Çopuroğlu O. et al. Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: An experimental and numerical study. Construction and Building Materials. 2020; 262:120094. DOI: 10.1016/j.conbuildmat.2020.120094

10. Ma G., Salman N.M., Wang L., Wang F. A novel additive mortar leveraging internal curing for enhancing interlayer bonding of cementitious composite for 3D printing. Construction and Building Materials. 2020; 244:118305. DOI: 10.1016/j.conbuildmat.2020.118305

11. Liu J., Li S., Gunasekara C., Fox K., Tran P. 3D-printed concrete with recycled glass: Effect of glass gradation on flexural strength and microstructure. Construction and Building Materials. 2022; 314:125561. DOI: 10.1016/j.conbuildmat.2021.125561

12. Van den Heever M., Bester F., Kruger J., van Zijl G. Numerical modelling strategies for reinforced 3D concrete printed elements. Additive Manufacturing. 2022; 50:102569. DOI: 10.1016/j.addma.2021.102569

13. Weng Y., Li M., Zhang D., Tan M.J., Qian S. Investigation of interlayer adhesion of 3D printable cementitious material from the aspect of printing process. Cement and Concrete Research. 2021; 143:106386. DOI: 10.1016/j.cemconres.2021.106386

14. Baduge S.K., Navaratnam S., Abu-Zidan Y., McCormack T., Nguyen K., Mendis P. et al. Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures. 2021; 29:1597-1609. DOI: 10.1016/j.istruc.2020.12.061

15. Lu B., Li M., Wong T.N., Qian S. Effect of printing parameters on material distribution in spray-based 3D concrete printing (S-3DCP). Automation in Construction. 2021; 124:103570. DOI: 10.1016/j.autcon.2021.103570

16. Salman N.M., Ma G., Ijaz N., Wang L. Importance and potential of cellulosic materials and derivatives in extrusion-based 3D concrete printing (3DCP): Prospects and challenges. Construction and Building Materials. 2021; 291:123281. DOI: 10.1016/j.conbuildmat.2021.123281

17. Shakor P., Nejadi S., Paul G., Sanjayan J. Dimensional accuracy, flowability, wettability, and porosity in inkjet 3DP for gypsum and cement mortar materials. Automation in Construction. 2020; 110:102964. DOI: 10.1016/j.autcon.2019.102964

18. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018; 143:172-196. DOI: 10.1016/j.compositesb.2018.02.012

19. Ma X., Tan L., Lu Y., Yao W., Wei Y. Upcy-cling of waste plasterboard for the synthesis of high-quality gypsum-based 3D printing powder. Construction and Building Materials. 2023; 373:130846. DOI: 10.1016/j.conbuildmat.2023.130846

20. Ma B., Jiang Q., Huang J., Wang X., Leng J. Effect of different silica particles on flowability of gypsum powder for 3D powder printing. Construction and Building Materials. 2019; 217:394-402. DOI: 10.1016/j.conbuildmat.2019.05.097

21. Dantas A.C.S., Scalabrin D.H., De Farias R., Barbosa A.A., Ferraz A.V., Wirth C. Design of Highly Porous Hydroxyapatite Scaffolds by Conversion of 3D Printed Gypsum Structures – A Comparison Study. Procedia CIRP. 2016; 49:55-60. DOI: 10.1016/j.procir.2015.07.030

22. Chernyisheva N.V., Shatalova S.V., Drebezgova M.Yu., Lesnichenko E.N. Thermal Insulating and Constructive Foamed Concrete on a Composite Gypsum Binder. Materials Science Forum. 2019; 974:125-130. DOI: 10.4028/www.scientific.net/msf.974.125

23. Shatalova S.V., Chernysheva N.V., Elistratkin M.Yu., Drebezgova M.Yu., Masalitina S.V. Rheological properties of gypsum cement binders and molding mixtures basedon them for 3d additive construction technologies. Construction Materials. 2022; 8:23-30. DOI: 10.31659/0585-430X-2022-805-8-23-30. EDN WSXKNG. (rus.).

24. Chernysheva N.V., Shatalova S.V., Masalitina S.V. Composite gypsum binders for porous composites in construction printing technology. University Science. 2021; 1(11):91-94. EDN ZSAQTD. (rus.).

25. Shatalova S., Chernysheva N., Lesovik V., Elistratkin M., Sheremet A. Development of a comprehensive solution for 3D printing of wall structures. Bulletin of BSTU named after V.G. Shukhov. 2022; 10:8-19. DOI: 10.34031/2071-7318-2022-7-10-8-19. EDN NMUSWL. (rus.).

26. Budnikov P.P. Gypsum, its research and application. Moscow; Leningrad, State Publishing House of Construction Literature, 1943; 368. (rus.).

27. Yung V.N., Butt Yu.M., Zhuravlev V.F., Okorokov S.D. Technology of binders. Moscow, State publishing house of literature on building materials, 1952; 600. (rus.).

28. Rebinder P.A. Physico-chemical studies of the deformation processes of solids. Collection of the USSR Academy of Sciences. 1947; 1:84-88. (rus.).

29. Volzhenskiy A.V., Ivannikova R.V. Gypsum cement and gypsum slag binders. Building Materials, Products and Structures. 1955; 4:13-16. (rus.).

30. Volzhenskiy A.V., Stambulko V.I., Ferronskaya A.V. Gypsum-cement-pozzolan binders, concretes and products. Moscow, Stroyizdat Publ., 1971; 318. (rus.).

31. Volzhenskiy A.V., Kogan G.S., Krasnoslobodskaya Z.S. The effect of active silica on the processes of interaction of aluminate components of Portland cement clinker with gypsum. Construction Materials. 1963; 1:31-34. (rus.).

32. Volzhenskiy A.V., Kogan G.S., Arbuzov N.T. Gypsum concrete panels for partitions and interior cladding of exterior walls. Moscow, Promstroyizdat, 1955; 186. (rus.).

33. Ferronskaya A.V. Durability of gypsum materials, products and structures. Moscow, Stroyizdat Publ., 1984; 253. (rus.).

34. Segodnik D.N., Potapova E.N. Gypsum cement — pozzolanic binder with active mineral additives metakaolin. Advances in Chemistry and Chemical Technology. 2014; 28(8):(157):77-79. EDN STFXJF. (rus.).

35. Volzhenskiy A.V., Rogovoy M.I., Stambulko V.I. Gypsum cement and gypsum slag products. Moscow, Gosstroyizdat, 1960; 168. (rus.).

36. Bulychev G.G. Mixed gypsum: production and application in construction. Moscow, State Publishing House of Literature on Construction and Architecture, 1952; 135. (rus.).

37. Sagdatullin D.G., Morozova N.N., Khozin V.G., Vlasov V.V. High-strength gypsum cement-ceolite binder. Construction Materials. 2010; 2:53-55. EDN MBCHZR. (rus.).

38. Sagdatullin D.G., Morozova N.N., Khozin V.G., Ilichyova O.M. Deformations of high-strength composition of gypseous binding during maturing. Bulletin of SUSU. Series “Construction Engineering and Architecture”. 2010; 15(191):51-53. EDN MNJOMJ. (rus.).

39. Ferronskaya A.V. Gypsum materials and products (production and application) : guide. Moscow, ASV, 2004; 485. (rus.).

40. Lesovik V.S., Elistratkin M.Yu., Glagolev E.S., Shatalova S.V., Starikov M.S. Formation of properties of compositions for construction printing. Bulletin of BSTU named after V.G. Shukhov. 2017; 10:6-14. DOI: 10.12737/article_59cd0c57ede8c1.83340178. EDN ZOWEOF. (rus.).

41. Shorstova E.S., Klyuev A.V., Klyuev S.V., Garkina I.A. Thin-grounded quartzite sandstone crushing screening in fiber concrete mixture for 3D-printing. Regional Architecture and Engineering. 2023; 3(56):69-76. DOI: 10.54734/20722958_2023_3_69. EDN MBGPIP. (rus.).

42. Slavcheva G.S., Ibryaeva A.I. Effect of concentration and filler’s granulometry for rheological properties cement paste. Bulletin of the Tver State Technical University. Construction series. Electrical engineering and chemical technologies. 2019; 2(2):29-36. EDN SHMTRK. (rus.).

43. Torshin A.O., Borovikova S.O., Korchunov I.V., Potapova E.N. Development of construction mixture for 3D-printing. Advances in Chemistry and Chemical Technology. 2018; 32(2):(198):164-166. EDN VMNBEG. (rus.).

44. Potapova E., Guseva T., Shchelchkov K., Fischer H.B. Mortar for 3D printing based on gypsum binders. Materials Science Forum. 2021; 1037:26-31. DOI: 10.4028/www.scientific.net/msf.1037.26

45. Bazhenov Yu.M. Modified high-quality concrete. Moscow, ASV Publ., 2006; 368. EDN QNMNZZ. (rus.).

46. Mukhametrakhimov R.Kh., Galautdinov A.R. Mechanically activated gypsum-cement-pozzolan binder based on modified low-grade raw materials. News of the Kazan State University of Architecture and Engineering. 2018; 1(43):187-195. EDN XNGJFB. (rus.).

47. Mukhametrakhimov R.Kh., Lukmanova L.V. Influence of Portland cements with different mineralogical composition on basic properties of 3d-printed composites. News of the Kazan State University of Architecture and Engineering. 2021; 2(56):37-49. DOI: 10.52409/20731523_2021_2_37. EDN DXDYSR. (rus.).

48. Mukhametrakhimov R.K., Lukmanova L.V. Influence Of Cement-Sand Mortar Mobility On The Quality Of 3D Printed Hardened Composite. Construction of Unique Buildings and Structures. 2021; 94:9404. DOI: 10.4123/CUBS.94.4


Review

For citations:


Rakhimov R.Z., Mukhametrakhimov R.Kh., Galautdinov A.R., Ziganshina L.V. Gypsum-cement-puzzolanic concrete for 3D CP. Vestnik MGSU. 2024;19(4):580-595. (In Russ.) https://doi.org/10.22227/1997-0935.2024.4.580-595

Views: 425


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)