Preview

Vestnik MGSU

Advanced search

Phytoremediation potential of green spaces in the city

https://doi.org/10.22227/1997-0935.2024.5.685-712

Abstract

Introduction. The deviation from average temperatures is currently 1.5 °C. If climate change continues, and due to anthropogenic influence, air temperature rises to 3–4 °C, then abnormally high heat waves will occur almost every year, bringing with them intense slow-moving rains. A review of more than 15 global programmes to implement green infrastructure in cities from the inception of this term in the 1970s and up to the present has been carried out. All of them have common long-term goals that coincide with the recommendations of the World Meteorological Organization and the United Nations Office for Disaster Risk Reduction.

Materials and methods. The authors continue their detailed study of the intersection of Leninsky Prospekt and Lobachevsky and Obruchev streets in Moscow. The cadastral unsettledness of the research area and the creation of the specially protected area “Landscape Reserve “Forest on the Samorodinka River” in 2020 create additional opportunities for the collection of stormwater and implementation of phytoremediation technologies.

Results. The authors carried out an analysis of the state of protected areas adjacent to the research area, noted plants that are endangered and listed in the Red Book. The approximate list of plants for use in phytoremediation facilities is given.

Conclusions. It is necessary to use green areas in the city to reveal phytoremediation potential. Properly selected plants that are sustainable in the urban environment will help to improve the existing natural resource, increase the recognizability of the urban environment and add new socio-cultural scenarios for residents to permanent use.

About the Authors

E. Yu. Zaykova
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Elena Yu. Zaykova — Candidate of Architecture, Associate Professor of the Department of Urban Planning

26 Yaroslavskoe shosse, Moscow, 129337

RISC AuthorID: 503400



S. S. Feofanova
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Sofiia S. Feofanova — postgraduate student of the Department of Urban Planning

26 Yaroslavskoe shosse, Moscow, 129337



References

1. Fowler H.J., Lenderink G., Prein A.F., Westra S., Allan R.P., Ban N. et al. Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment. 2021; 2(2):107-122. DOI: 10.1038/s43017-020-00128-6

2. Michael Le Page. Earth passes 2 °C of warming on hottest day ever recorded. New Scientist. 2023. URL: https://www.newscientist.com/article/2403743-earth-passes-2c-of-warming-on-hottest-day-ever-recorded/

3. Nkonya E., Mirzabaev A., Braun J. Economics of Land Degradation and Improvement – a Global Assessment for Sustainable Development. 2016. DOI: 10.1007/978-3-319-19168-3

4. Laufkötter C., Zscheischler J., Frölicher T.L. High-impact marine heatwaves attributable to human-induced global warming. Science. 2020; 369(651):1621-1625. DOI: 10.1126/science.aba0690

5. Park C.E., Jeong S.J., Joshi M., Osborn T.J., Ho C.H., Piao S. et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nature Climate Change. 2018; 8(1):70-74. DOI: 10.1038/s41558-017-0034-4

6. Bytnerowicz T.A., Akana P.R., Griffin K.L., Menge D.N.L. Temperature sensitivity of woody nitrogen fixation across species and growing temperatures. Nature Plants. 2022; 8(3):209-216. DOI: 10.1038/s41477-021-01090-x

7. Lipka O.N., Korzukhin M.D., Zamolodchikov D.G., Dobrolyubov N.Yu., Krylenko S.V., Bogdanovich A.Yu. et al. A role of forests in natural systems adaptation to climate change. Russian Journal of Forest Science. 2021; 5:531-546. DOI: 10.31857/S002411-4821050077. EDN OWSSBF. (rus.).

8. Getmanova Yu. China’s silicon valley — Zhongguancun technopark. Asia-Pacific region: history and modernity – XIV : Materials of the international scientific and practical conference of young scientists dedicated to the 100th anniversary of diplomatic relations between Russia and Mongolia. 2021; 55-58. EDN DBCCPE. (rus.).

9. Mezhov S.I., Bastubaev A.K. Innovation development in China. Economic Development of the Region: Management, Innovation, Training. 2018; 5:230-236. EDN YARKVF. (rus.).

10. Val’dkhaym Ch. Landscape as urbanism. Architects of the Russian Federation. 2022. URL: https://xn--80akijuiemcz7e.xn--p1ai/articles/landshaft-kak-urbanizm (rus.).

11. Tharp R. Ecological Stormwater Management: Analysis of design components to improve understanding and performance of stormwater retention ponds : Dissertations. Burlington, University of Vermont, 2018; 157.

12. Ferry R., Monoian E. Land art as climate action. Munich, Hirmer Publishers, 2023; 240.

13. Kurutz S. From Europe, a No-Chlorine Backyard Pool. The New York Times. 2007.

14. Kim Harrisberg. How can ‘sponge cities’ use nature to tackle climate-fuelled floods? Thomson Reuters Foundation. 2022. URL: https://news.trust.org/item/20220327192248-8ntoq/

15. Chernokulsky A., Kozlov F., Zolina O., Bulygina O., Mokhov I.I., Semenov V.A. Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades. Environmental Research Letters. 2019; 14(4):045001. DOI: 10.1088/1748-9326/aafb82

16. Yarinich Yu.I., Varentsov M.I., Platonov V.S., Stepanenko V.M., Chernokulsky A.V., Davletshin S.G. et al. The effect of Moscow megapolis on warm-season precipitation depending on large-scale atmospheric conditions. Water Resources. 2023; 50(5):550-560. DOI: 10.31857/S0321059623600151. EDN HOVOYL. (rus.).

17. Li F., Xiao J., Chen J., Ballantyne A., Jin K., Li B. et al. Global water use efficiency saturation due to increased vapor pressure deficit. Science. 2023; 381(6658):672-677. DOI: 10.1126/science.adf5041

18. Dunn R.J.H., Alexander L.V., Donat M.G., Zhang X., Bador M., Herold N. et al. Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3. Journal of Geophysical Research: Atmospheres. 2020; 125(16). DOI: 10.1029/2019JD032263

19. Alberti M., Palkovacs E.P., Roches S.D., Meester L.D., Brans K.I., Govaert L. et al. The Complexity of Urban Eco-evolutionary Dynamics. BioScience. 2020; 70(9):772-793. DOI: 10.1093/biosci/biaa079

20. Menzel A., Fabian P. Growing season extended in Europe. Nature. 1999; 397(6721):659. DOI: 10.1038/17709

21. Zohner C.M., Mirzagholi L., Renner S.S., Mo L., Rebindaine D., Bucher R. et al. Effect of climate warming on the timing of autumn leaf senescence reverses after the summer solstice. Science. 2023; 381(6653). DOI: 10.1126/science.adf5098

22. Zaykova E.Yu., Feofanova S.S. Green infrastructure as a stormwater management tool. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2022; 17(11):1429-1452. DOI: 10.22227/1997-0935.2022.11.1429-1452 (rus.).

23. Abdikadyrov A., Marxuly S., Tashtai E., Kuttybayeva A. Investigation of the process of purification and disinfection of surface waters using an ozonator plant. Vestnik KazATK. 2023; 126(3):462-478. DOI: 10.52167/1609-1817-2023-126-3-462-478. EDN QDRCQQ. (rus.).

24. Dunbabin J.S., Bowner К.Н. Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment. 1992; 111(2-3):151-168. DOI: 10.1016/0048-9697(92)90353-t

25. Hemalatha M., Mohan S.V. Duckweed biorefinery – Potential to remediate dairy wastewater in integration with microbial protein production. Bioresource Technology. 2022; 346:126499. DOI: 10.1016/j.biortech.2021.126499

26. Dinh T.T.U., Soda S., Nguyen T.A.H., Nakajima J., Cao T.H. Nutrient removal by duckweed from anaerobically treated swine wastewater in lab-scale stabilization ponds in Vietnam. Science of the Total Environment. 2020; 722:137854. DOI: 10.1016/j.scitotenv.2020.137854

27. Melekhin A.G., Shchukin I.S. Analysis of existing bioengineered surface runoff treatment facilities and the possibility of their application in the conditions of the Western Urals. Bulletin of Perm State Technical University. Construction and Architectureи. 2013; 2:40-51. EDNRBQSGB. (rus.).

28. Feofanova S.S., Zaykova E.Y. Territorial physical and mathematical model of stormwater management. E3S Web of Conferences. 2023; 403:04003. DOI: 10.1051/e3sconf/202340304003

29. Talabi A.O., Kayode T.J. Groundwater Pollution and Remediation. Journal of Water Resource and Protection. 2019; 11(01):1-19. DOI: 10.4236/jwarp.2019.111001

30. Ulrikh D.V. Bioengineering facilities for contaminated surface runoff treatment. Engineering journal of Don. 2017; 2(45):148. EDN ZEOOMF. (rus.).

31. Kalmykova A.L. Construction and maintenance of landscape architecture objects : a short course of lectures for students of the training direction. Saratov, Saratov State Agrarian University, 2016; 37. (rus.).

32. Zaykova E. Healing landscapes in the multifunctional hybrid objects. Proceedings of the Annual International Conference on Architecture and Civil Engineering. 2019; 347-355.

33. Zaykova E. Formation methods of hybrid urban spaces in the historic city center. E3S Web of Con-ferences. 2019; 97:01031. DOI: 10.1051/e3sconf/20199701031

34. Zaykova E. Strategies ensuring the Stability of Natural and Urbanized Biotopes in hybrid multifunctional objects. IOP Conference Series: Materials Science and Engineering. 2021; 1030(1):012065. DOI: 10.1088/1757-899x/1030/1/012065


Review

For citations:


Zaykova E.Yu., Feofanova S.S. Phytoremediation potential of green spaces in the city. Vestnik MGSU. 2024;19(5):685-712. (In Russ.) https://doi.org/10.22227/1997-0935.2024.5.685-712

Views: 320


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)