Preview

Vestnik MGSU

Advanced search

Environmentally friendly construction technologies selection criteria in the Arctic

https://doi.org/10.22227/1997-0935.2024.6.1031-1046

Abstract

Introduction. The paper substantiates the relevance of creating and improving digital tools for complex scientific research and development work based on the information model of a construction object at all stages of the life cycle. The research focuses on environmentally safe (green) construction in the northern and Arctic regions. The purpose of the study is to substantiate a set of criteria for “green” for the northern and Arctic regions of the Russian Federation on the basis of logically interrelated models: a design model, a full-scale model, mathematical models and a digital twin model. The main criteria include energy efficiency and environmental safety of buildings.

Materials and methods. The objects of the study are two twin buildings designed and built according to the programme of scientific research in the Republic of Karelia and the Murmansk region. The objects are identical, but the conditions of their functioning are different. The methodology of complex scientific research for each stage of the life cycle of objects is proposed. The methods of comparative analysis and the method of expert assessments were used, as well as the methods presented in the normative and technical documents of the technical regulation system of the Russian Federation related to the technological aspects of construction.

Results. Four groups of basic construction criteria for the northern and Arctic regions of the Russian Federation are defined: external environment; internal environment; materials and technologies; energy efficiency. The Research Information Model (RIM) was developed as a tool for comprehensive scientific research in the field of construction technologies in the northern and Arctic regions. The practical implementation of the results of the study at the two above-mentioned facilities, including digital monitoring of the condition of the facilities for two years (2021–2023), is considered. Prospects for the continuation of the research are determined.

Conclusions. The necessity of the development is justified and the expediency of using the developed information model of research is confirmed by the example of two constructed objects. The experience of using the main blocks of the model and digital monitoring of the condition of objects for two years has confirmed the expediency of using information modelling and continuing research to improve construction technologies in the northern and Arctic regions.

About the Authors

A. A. Kuzmenkov
Petrozavodsk State University (PetrSU)
Russian Federation

Alexander A. Kuzmenkov — Candidate of Economic Sciences, Associate Professor of the Department of Technology and Organization of Construction

33 Lenin st., Petrozavodsk, 185910

RISC AuthorID: 359459, Scopus: 57220389900



A. V. Kaychenov
Murmansk Arctic State University (MAU)
Russian Federation

Alexander V. Kaychenov — Doctor of Technical Sciences, Associate Professor, Head of the Department of Automation and Computer Engineering

13 Sportivnaya st., Murmansk, 183010

RISC AuthorID: 544546, Scopus: 57210912615



References

1. Benuzh A.A., Kolchigin M.A. Analysis of the Concept of “Green” Construction as a Vehicle to Ensure the Environmental Safety of Construction Activities. Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2012; 12:161-165. EDN PJOUSN. (rus.).

2. Telichenko V.I., Benuzh A.A. Review and classification of rating systems for building certification. Bulletin of the Volgograd State University of Architecture and Civil Engineering. 2013; 31-1(50):239-243. EDN RDPBRB. (rus.).

3. Telichenko V.I., Slesarev M.Yu. Green standardization of the future is a factor of ecological safety of the life environment. Industrial and Civil Engineering. 2018; 8:90-97. EDN XWBDZJ. (rus.).

4. Telichenko V.I., Slesarev M.Yu. “Green” standardization of technologies for forming the nature-friendly living environment. Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2018; 13(5):(116):558-567. DOI: 10.22227/1997-0935.2018.5.558-567 (rus.).

5. Vasil′yeva ZH. V., Buryachenko S.Yu. Basic principles of the “green building” concept. Proceedings of higher educational institutions. The Arctic region. 2018; 1:12-15. EDN VWFTQA. (rus.).

6. Nikiforova V.A., Kaverzina L.A., Nuzhina I.P. “Green” construction as an effective tool of sustainable development of territories. Issues of Social-Economic Development of Siberia. 2020; 1(39):44-50. DOI: 10.18324/2224-1833-2020-1-44-50. EDN DTKCNS. (rus.).

7. Rotar A.M. “Green” construction as an effective tool for sustainable development of territories. Entrepreneur’s Guide. 2022; 15(2):63-68. DOI: 10.24182/2073-9885-2022-15-2-63-68 (rus.).

8. Тоmakov V.I., Тоmakov М.V. Green building in the concept of sustainable development of Russian cities. Proceedings of the Soutwest State University. 2017; 21(2):(71):16-31. DOI: 10.21869/2223-1560-2017-21-2-16-31. EDN YTPVFP. (rus.).

9. Ravasio L., Riise R., Sveen S.E. Green Buildings in the Arctic region : a literature review. E3S Web of Conferences. 2020; 172:16002. DOI: 10.1051/e3sconf/202017216002

10. Telichenko V.I., Shcherbina E.V. Social-natural-technogenic system of sustainable environment of vital activity. Industrial and Civil Engineering. 2019; 6:5-12. DOI: 10.33622/0869-7019.2019.06.5-12. EDN KUKAGX. (rus.).

11. Gutman S., Teslya A. Environmental safety as an element of single-industry towns’ sustainable development in the Arctic region. IOP Conference Series: Earth and Environmental Science. 2018; 180:012010. DOI: 10.1088/1755-1315/180/1/012010

12. Voronina E. Development of the Arctic regions of the Russian Federation: Drivers of greening. E3S Web of Conferences. 2021; 244:10051. DOI: 10.1051/e3sconf/202124410051

13. Ravasio L., Sveen S.E., Riise R. Green building in the Arctic region: State-of-the-art and future research opportunities. Sustainability. 2020; 12(22):9325. DOI: 10.3390/su12229325

14. Buryachenko S.Yu., Kuzmenkov A.A., Karachentseva I.M., Voronin Z.A., Popova O.M. Green building in the northern and Arctic regions. IOP Conference Series: Earth and Environmental Science. 2021; 937(4):042030. DOI: 10.1088/1755-1315/937/4/042030

15. Kisel T.N., Prokhorova Yu.S. The level of digitalization of Russian enterprises in the investment and construction sector. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(6):971-987. DOI: 10.22227/1997-0935.2023.6.971-987. EDN MGOJFC. (rus.).

16. Lapidus A.A. Organizational and technological platform of construction. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2022; 17(4):516-524. DOI: 10.22227/1997-0935.2022.4.516-524. EDN BMHWDX. (rus.).

17. Gusakova E.A., Ovchinnikov A.N. Prospects for the life cycle modeling of a capital construction facility using information flows. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2020; 15(8):1191-1200. DOI: 10.22227/1997-0935.2020.8.1191-1200. EDN BBAAAZ. (rus.).

18. Lapidus A.A., Shevchenko I.S. Main principles of the formation of organizational and technological platform for scientific and technical support of unique objects. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(7):1138-1147. DOI: 10.22227/1997-0935.2023.7.1138-1147. EDN LRPIZJ. (rus.).

19. Lapidus A.A., Motylev R.V., Sokolnikov V.V. Development of a methodology underlying a deterministic model of construction work arrangements on the basis of the concept of an organizational and technological platform for construction. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(1):116-131. DOI: 10.22227/1997-0935.2023.1.116-131. EDN IDDMFY. (rus.).

20. Safina G.L., Ershov D.S., Kornev A.S., Khayrullin R.Z. Modelling of processes of creation of hi-tech construction products. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(5):785-797. DOI: 10.22227/1997-0935.2023.5.785-797. EDN CECEAJ. (rus.).

21. Larionov A.N., Prikhodko A.V. Further introduction of information modelling technologies in the course of implementation of investment projects in the field of housing construction. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(2):270-282. DOI: 10.22227/1997-0935.2023.2.270-282. EDN ZVIYHH. (rus.).

22. Dmitriyev A.N., Vladimirova I.L. BIM Technologies in Building Construction Projects Management in Russia. Industrial and Civil Engineering. 2019; 10:48-59. DOI: 10.33622/0869-7019.2019.10.48-59. EDN FXXZAA. (rus.).

23. Burova O.A., Bozhik A.S., Shevtsov A.V. Application of BIO technologies in construction: domestic and international experience. Bulletin of the MFUA. 2020; 2:84-90. EDN HYOTET. (rus.).

24. Churbanov A.E., Shamara Yu.A. The impact of information modelling technology on the development of investment-construction process. Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2018; 13(7):(118):824-835. DOI: 10.22227/1997-0935.2018.7.824-835. EDN XUWKPR. (rus.).

25. Telichenko V.I. Green technologies of living Environment: Concepts, terms, Standards. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2017; 12(4):(103):364-372. DOI: 10.22227/1997-0935.2017.4.364-372. EDN YNCVQX. (rus.).

26. Telichenko V.l., Benuzh A.A., Suhinina E.A. Interstate green standards of formation sustainable built environment vital activity. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2021; 16(4):438-462. DOI: 10.22227/1997-0935.2021.4.438-462. EDN EXLUMH. (rus.).

27. Telichenko V.I., Lapidus А.А., Slesarev M.Yu. Analysis and synthesis of images of environmentally oriented innovative technologies of construction production. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(8):1298-1305. DOI: 10.22227/1997-0935.2023.8.1298-1305. EDN RNDOCL. (rus.).

28. Viktorov M.Yu. Digitalization in the field of investment and construction projects. Proceedings of Universities. Investment. Construction. Real Estate. 2020; 10(4):(35):516-523. DOI: 10.21285/2227-2917-2020-4-516-523. EDN MLLUEV. (rus.).

29. Larionov A., Karacheva A. Digitalization as an innovative factor of reducing the time and increasing the quality of housing construction in the Moscow region. Journal of Management Studies. 2020; 6:30-57. EDN RIIKJT. (rus.).

30. Larionov A.N., Solovev V.V., Morozov A.A. Development of a capital expenditure model in the context of construction digitalization. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(1):91-101. DOI: 10.22227/1997-0935.2023.1.91-101. EDN OWNGYT. (rus.).

31. Volkodav V.A., Volkodav I.A. Development of the structure and composition of a building information classifier towards the application of BIM technologies. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2020; 15(6):867-906. DOI: 10.22227/1997-0935.2020.6.867-906. EDN RGQGTO. (rus.).

32. Gusakova E.A. Information modeling of life cycle of high-rise construction projects. Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2018; 13(1):(112):14-22. DOI: 10.22227/1997-0935.2018.1.14-22. EDN YNHJXW. (rus.).

33. Larionov A.N., Prikhodko A.V. Further introduction of information modelling technologies in the course of implementation of investment projects in the field of housing construction. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(2):270-282. DOI: 10.22227/1997-0935.2023.2.270-282. EDN ZVIYHH. (rus.).

34. Gusakova E.A., Ovchinnikov A.N. Prospects for the life cycle modeling of a capital construction facility using information flows. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2020; 15(8):1191-1200. DOI: 10.22227/1997-0935.2020.8.1191-1200. EDN BBAAAZ. (rus.).

35. Utkina V.N., Gryaznov S.U., Babushkina D.R. Problems and prospects of implementation of information modeling technology in the construction field of Russia: problems and prospects of implementation. Economy, Governance and Law Basis. 2019; 1(19):57-61. DOI: 10.51608/23058641_2019_1_57. EDN YPHGPG. (rus.).

36. Bolotova A.S., Marshavina Ja.I. Problems of the Implementation of BIM Technologies in Russia. Construction Production. 2021; 2:70-80. DOI: 10.54950/26585340_2021_2_70. EDN PEYWAO. (rus.).

37. Larionov A.N., Prikhodko A.V. Assessment of the prospects for the use of information modeling technologies in housing construction in Russia for the period up to 2030. Construction Economics. 2022; 9:67-78. EDN DBQGIL. (rus.).

38. Buryachenko S., Voronin Z., Karachentseva I., Kuzmenkov A., Popova O. Factors influencing the rating of low-rise wooden houses as “green” buildings. E3S Web of Conferences. 2021; 263:05018. DOI: 10.1051/e3sconf/202126305018

39. Kuzmenkov A.A., Karachentseva Ia.M., Derbenev A.V. Substantiation of constructive and technological solutions for an experimental low-rise wooden house in accordance with the principles of “Green Building”. Resources and Technology. 2021; 18(1):66-93. DOI: 10.15393/j2.art.2021.5522. EDN VTLGWT. (rus.).

40. Kuzmenkov A., Kaychenov A., Karachentseva I., Vasileva Z., Buryachenko S., Voronin Z. Information model of green building research in the Arctic: methodological aspects. E3S Web of Conferences. 2023; 420:03021. DOI: 10.1051/e3sconf/202342003021

41. Kuzmenkov A., Kolesnikov G., Voronin Z. Green Technologies of Wooden Building for Arctic. Lecture Notes in Civil Engineering. 2022; 385-398. DOI: 10.1007/978-3-030-94770-5_30

42. Buryachenko S.Yu., Karachentseva I.M., Voronin Z.A., Kuzmenkov A.A. The influence of enclosing structures of walls on the energy efficiency of a wooden building (on the example of the international project KO 1089 “Green Arctic Building”). IOP Conference Series: Earth and Environmental Science. 2020; 539(1):012024. DOI: 10.1088/1755-1315/539/1/012024

43. Kuzmenkov A., Tikhonov E., Kolesni-kov G. Thermal bridges in wall panels of wooden frame houses. Proceedings of EECE 2019. 2020; 329-336. DOI: 10.1007/978-3-030-42351-3_29

44. Karachentseva I., Kuzmenkov A., Kaychenov A., Voronin Z. Energy-efficient building materials for Arctic conditions as a criterion for “green building”. E3S Web of Conferences. 2023; 383:04075. DOI: 10.1051/e3sconf/202338304075

45. Buryachenko S., Voronin Z., Karachentseva I., Kuzmenkov A., Popova O. Monitoring of thermophysical properties of wooden buildings envelopes in climatic conditions of Murmansk and Petrozavodsk. E3S Web of Conferences. 2021; 244:05025. DOI: 10.1051/e3sconf/202124405025

46. Kuzmenkov A., Karachentseva I. Refinement of thermal engineering calculations results taking into account actual materials characteristics. E3S Web of Conferences. 2023; 402:07001. DOI: 10.1051/e3sconf/202340207001

47. Kuzmenkov A.A., Kuvshinov D.A., Buryachenko S.Yu., Kaychenov A.V., Karachentseva I.M., Voronin Z.A. Monitoring system for temperature and relative humidity of the experimental building. Journal of Physics: Conference Series. 2021; 2131(5):052070. DOI: 10.1088/1742-6596/2131/5/052070

48. Kuzmenkov A., Buryachenko S., Kuvshinov D., Karachentseva I., Popova O., Voronin Z. et al. Humidity Regime of a Double Wooden Wall Made of Rounded Logs. Lecture Notes in Networks and Systems. 2021; 1276-1284. DOI: 10.1007/978-3-030-96383-5_142

49. Kaychenov A., Lukin S., Yarotskaya A., Selyakov I., Ereschenko V., Kuzmenkov A. Automated systems for monitoring microclimate parameters and electricity metering of an experimental building. E3S Web of Conferences. 2023; 389:02005. DOI: 10.1051/e3sconf/202338902005

50. Kaychenov A.V., Lukin S.A., Yarotskaya A.A. Development of a system for automated monitoring of microclimate parameters and an automated system for monitoring and accounting for electricity of a model facility. Vestnik of MSTU. 2022; 25(4):298-304. DOI: 10.21443/1560-9278-2022-25-4-298-304. EDN ICJLSN. (rus.).

51. Stolyanov A., Zhuk A., Vlasov A., Maslov A., Kuranova L., Kaychenov A. Complex for modeling and optimization the sterilization process. IOP Conference Series: Earth and Environmental Science. 2019; 403(1):012016. DOI: 10.1088/1755-1315/403/1/012016

52. Kaychenov A.V., Blagoveshchenskiy I.G. Complex modernization of control systems for the processes of heat treatment of Arctic aquatic bioresources using intelligent technologies : monograph. Kursk, 2022; 251. EDN QCTQSF. (rus.).


Review

For citations:


Kuzmenkov A.A., Kaychenov A.V. Environmentally friendly construction technologies selection criteria in the Arctic. Vestnik MGSU. 2024;19(6):1031-1046. (In Russ.) https://doi.org/10.22227/1997-0935.2024.6.1031-1046

Views: 189


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)