Advanced technique for flexible cable analysis
https://doi.org/10.22227/1997-0935.2024.7.1091-1103
Abstract
Introduction. Cable structures belong to perspective roof systems. Specialized software packages for structural analysis, however, do not provide optimization tools for obtaining efficient design solutions of the cable structures. Thus, development of improved methods for design and analysis of cable systems is an important task to be solved. An advanced technique for flexible cable analysis is proposed. It includes ordinary operations of summing the coefficients and their products. The technique is applicable for non-commercial mathematical software packages with numerical simulation tools included, thus providing structural optimization capabilities.
Materials and methods. The technique proposed is based on the sine-series expansion of the external load and the shape function of the flexible cable. The differential equation of cable equilibrium is thus transformed into the set of algebraic equations. The cable length is expressed in algebraic form by means of the power expressions for the sum of the series.
Results. The equation for the flexible cable is derived. It includes cable ordinate, axial stiffness, relative elongation and the external load parameters. The technique for determination of the axial stiffness of the cable is proposed under the operability conditions. The techniques for finding load-induced vertical displacements, as well as the initial cable sag and the undeformed length are given. The length of the cable under load and the ordinate given the cable length are proposed.
Conclusions. The technique for flexible cable analysis allows taking into account distributed transverse external loads. For a combined load the coefficients of the series are the sum of the particular load coefficients. The technique is intended for automated structural solution. It allows facilitating the preliminary design stage, thus providing optimal parameters determination and in-depth design study implementation. Further development of the proposed technique encompasses the fields of non-shallow cable analysis, multy-chord cable systems, cable structures with stiffening girders, strutted cable systems and spatial roof structures.
About the Authors
A. V. ChesnokovRussian Federation
Andrei V. Chesnokov — Candidate of Technical Sciences, Associate Professor of the Department of Construction Production
30 Moskovskaya st., Lipetsk, 398055
RSCI AuthorID: 473598, Scopus: 57170021900, ResearcherID: U-4758-2018
V. V. Mikhailov
Russian Federation
Vitalii V. Mikhailov — Doctor of Technical Sciences, Professor, Head of the Department of Construction Production
30 Moskovskaya st., Lipetsk, 398055
RSCI AuthorID: 821209, Scopus: 57215327886, ResearcherID: ISU-9851-2023
References
1. Engel H. Support systems. Moscow, AST Astrel’ Publ., 2007; 344. (rus.).
2. Zhang Z., Dong S., Fu X. Structural design of lotus arena: a large-span suspen-dome roof. International Journal of Space Structures. 2009; 24(3):129-142. DOI: 10.1260/026635109789867634
3. Eremeev P.G. Hanging structures. Construction Materials. 2022; 10:62-67. DOI: 10.31659/0585-430X-2022-807-10-62-67. EDN HOJHSN. (rus.).
4. Ibragimov A.M., Gnedina L.Iu., Dolgusheva V.V. Problems of application and design of combined arc systems. Vestnik of Volga State University of Technology. Series: Materials. Constructions. Technologies. 2021; 2:25-35. DOI: 10.25686/2542-114X.2021.2.25. EDN PKRRXZ. (rus.).
5. Eremeev P.G., Kiselev D.B. Modern combined arch-backstays constructions. Mounting and Special Works in Construction. 2005; 9:11-16. EDN YPOPTI. (rus.).
6. Llorens J. Detailing masts. Proceedings of the IASS Annual Symposium. Structural membranes 2019. 2019; 359-366.
7. Arellano H., Gomez R., Tolentino D. Parametric analysis of multi-span cable-stayed bridges under alternate loads. The Baltic Journal of Road and Bridge Engineering. 2019; 14(4):543-567. DOI: 10.7250/bjrbe.2019-14.457
8. Al-Rousan R. The impact of cable spacing on the behavior of cable-stayed bridges. Magazine of Civil Engineering. 2019; 7(91):49-59. DOI: 10.18720/MCE.91.5. EDN YJWAIV.
9. Mushchanov V., Protopopov I., Korsun O., Garifullin M. Definition of the rational geometry of the cable-beam cover over stadium tribunes. Procedia Engineering. 2015; 117:1001-1012. DOI: 10.1016/j.proeng.2015.08.209
10. Yan X., Yang Y., Chen Z., Ma Q. Mechanical properties of a hybrid cable dome under non-uniform snow distribution. Journal of Constructional Steel Research. 2019; 153:519-532. DOI: 10.1016/j.jcsr.2018.10.022
11. Xue Y., Luo Y., Wang Y., Xu X., Wan H.P. et al. A new configuration of Geiger-type cable domes with sliding ridge cables: Computational framework and structural feasibility investigation. Engineering Structures. 2023; 286:116028. DOI: 10.1016/j.engstruct.2023.116028
12. Krishnan S. Structural design and behavior of prestressed cable domes. Engineering Structures. 2020; 209:110294. DOI: 10.1016/j.engstruct.2020.110294
13. Lienhard J., Alpermann H., Gengnagel C., Knippers J. Active bending, a review on structures where bending is used as a self-formation process. International Journal of Space Structures. 2013; 28(3-4):187-196. DOI: 10.1260/0266-3511.28.3-4.187
14. Mazzola C., Stimpfle B., Zanelli A., Canobbio R. TemporActive Pavilion: first loop of design and prototyping of an ultra-lightweight temporary architecture. Proceedings of the TensiNet Symposium. 2019; 390-401.
15. Yeremeyev P. The metal hybrid structures of roofs. Bulletin of the Scientific Research Center “Construction”. 2019; 2(21):30-40. EDN XGKKKL. (rus.).
16. Sitnikov I.R., Golikov A.V. Adjustment of forces in large-span structures in the design of a rational constructive form of a dolphinarium in Volgograd. Structural Mechanics of Engineering Constructions and Buildings. 2018; 14(4):278-292. DOI: 10.22363/1815-5235-2018-14-4-278-292. EDN XXRMGL. (rus.).
17. Okuneva M.A., Sakharova D.V., Khazov P.A. Self-consistent system “Load-bearing structures — elastic base” with the use of prestressed cable-stayed elements. Privolzhsky Scientific Journal. 2022; 1(61):81-87. EDN OLITFZ. (rus.).
18. Yeremeyev P.G. Cable-stayed combined structural system “Tensegrity”. Industrial and Civil Engineering. 2021; 1:21-27. DOI: 10.33622/0869-7019.2021.01.21-27. EDN XVAVUG. (rus.).
19. Zhao Y., Guo J., Jiang Z., Chen W., Zhou G. Control method for determining feasible pre-stresses of cable-struts structure. Thin-Walled Structures. 2022; 174:109159. DOI: 10.1016/j.tws.2022.109159
20. Eremeev P.G. Tent membranes for enveloping structures of roof over stadium tribunes. Industrial and Civil Engineering. 2015; 4:33-36. EDN TPXBCT. (rus.).
21. Wagner R. Simplified design tools for single/double curved membranes and inflated cushions. International Journal of Space Structures. 2008; 23(4):233-241. DOI: 10.1260/026635108786959843
22. Borgart A. An approximate calculation method for air inflated cushion structures for design purposes. International Journal of Space Structures. 2010; 25(2):83-91. DOI: 10.1260/0266-3511.25.2.83
23. Krasnoshchekov Yu.V., Makeev S.A., Krasotina L.V. Application of a chart of flexible filament for the calculation of ceiling at crash of column of framework. Russian Journal of Building Construction and Architecture. 2017; 4(48):11-20. EDN ZVZSUP. (rus.).
24. Xue S., Li X., Liu Y. Advanced form finding of cable roof structures integral with supporting frames: numerical methods and case studies. Journal of Building Engineering. 2022; 60:105204. DOI: 10.1016/j.jobe.2022.105204
25. Nie R., He B., Hodges D.H., Ma X. Form finding and design optimization of cable network structures with flexible frames. Computers & Structures. 2019; 220:81-91. DOI: 10.1016/j.compstruc.2019.05.004
26. Chen S., Yang M., Meng D., Hu S. Theoretical solution for multi-span continuous cable structures considering sliding. International Journal of Solids and Structures. 2020; 207:42-54. DOI: 10.1016/j.ijsolstr.2020.09.024
27. Yuan P., He B., Nie R., Zhang L., Yu H., Wang W. et al. Member importance prediction and failure response analysis for cable network antennas. Engineering Structures. 2022; 266:114642. DOI: 10.1016/j.engstruct.2022.114642
28. Freire A.M.S., Negrao J.H.O., Lopes A.V. Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges. Computers & Structures. 2006; 84(31-32):2128-2140. DOI: 10.1016/j.compstruc.2006.08.047
29. Chunjiang W., Renpeng W., Shilin D., Ruo-jun Q. A new catenary cable element. International Journal of Space Structures. 2003; 18(4):269-275. DOI: 10.1260/026635103322987986
30. Costa R.S., Lavall A.C.C., Lanna da Silva R.G., Porcino dos Santos A., Viana H.F. Cable structures: An exact geometric analysis using catenary curve and considering the material nonlinearity and temperature effect. Engineering Structures. 2022; 253:113738. DOI: 10.1016/j.engstruct.2021.113738
31. Abad M.S.A., Shooshtari A., Esmaeili V., Riabi A.N. Nonlinear analysis of cable structures under general loadings. Finite Elements in Analysis and Design. 2013; 73:11-19. DOI: 10.1016/j.finel.2013.05.002
32. Ma S., Yuan X.F., Deng M., Yang L. Minimal mass design of a new cable truss in two states. Mecha-nics Research Communications. 2022; 125:103995. DOI: 10.1016/j.mechrescom.2022.103995
33. Greco L., Impollonia N., Cuomo M. A procedure for the static analysis of cable structures following elastic catenary theory. International Journal of Solids and Structures. 2014; 51(7-8):1521-1533. DOI: 10.1016/j.ijsolstr.2014.01.001
34. Wagner R. Bauen mit seilen und membranen. Berlin, Beuth Verlag GmbH, 2016; 517.
35. Huang Y., Lan W. Static analysis of cable structure. Applied Mathematics and Mechanics. 2006; 27(10):1425-1430. DOI: 10.1007/s10483-006-1015-y
36. Kmet S., Kokorudova Z. Non-linear closed-form computational model of cable trusses. International Journal of Non-Linear Mechanics. 2009; 44(7):735-744. DOI: 10.1016/j.ijnonlinmec.2009.03.004
37. Moskalev N.S. Hanging roof structures. Moscow, Stroyizdat Publ., 1980; 336. (rus.).
38. Turusov R.A., Andrev V.I., Tsybin N.Yu. General solution of bending of multilayer beams in fourier series. Structural Mechanics of Engineering Constructions and Buildings. 2017; 4:34-42. DOI: 10.22363/1815-5235-2017-4-34-42. EDN ZHAIYZ. (rus.).
39. Chernyshov A.D., Goryainov V.V., Kuzne-tsov S.F., Nikiforova O.Yu. Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load. Tomsk State University Journal of Mathematics and Mechanics. 2021; 70:127-142. DOI: 10.17223/19988621/70/11. EDN REGKRY. (rus.).
40. Yessenbayeva G.A., Akhanov F.M., Makazhanova T.Kh. On the calculation of rectangular plates by the trigonometric series. Bulletin of the Karaganda University. Mathematics Series. 2019; 94(2):115-120. DOI: 10.31489/2019M2/115-120
41. Shah N.D., Shah D.A., Desai J.A., Patil H.S. Analysis of long span suspension bridges using series method. International Journal of Advanced Engineering Technology. 2010; 1(1):84-94.
42. Tolstov G.P. Fourier Series. Dover Publications Publ., 2012; 352.
43. Dmitriyev L.G., Kasilov A.V. Cable-stayed roofs (calculation and design). Kiev, Budivel’nik Publ., 1974; 271. (rus.).
Review
For citations:
Chesnokov A.V., Mikhailov V.V. Advanced technique for flexible cable analysis. Vestnik MGSU. 2024;19(7):1091-1103. (In Russ.) https://doi.org/10.22227/1997-0935.2024.7.1091-1103