Preview

Vestnik MGSU

Advanced search

Resistance to progressive collapse of monolithic frames of buildings at localized damage of nodes from push-through

https://doi.org/10.22227/1997-0935.2024.9.1454-1468

Abstract

Introduction. When designing buildings and structures it is necessary to ensure mechanical safety throughout the life cycle of the object. During the operation of buildings, situations arise in which monolithic load-bearing structures acquire defects in the area of the slab-column connection (SCC) in girderless slabs. These are, first of all, cracks caused by bending of slabs and slab pushing through by columns. The problem of taking into account the operation of structures with regard to such data of local damages in emergency situations is not sufficiently studied. In a number of cases the loss of bearing capacity of nodes is of brittle nature, which is not allowed by normative documents, as it can lead to progressive, including avalanche-like, destruction of neighboring elements.

Materials and methods. The bearing capacity of elements and the degree of resistance to progressive failure of a 9-storey monolithic girderless frame under different scenarios of initial local damages are determined. Three levels of such damage are introduced, and the slab and column connection nodes are modeled by volumetric finite elements. Verification of the computational model is performed experimentally by in-situ pushover tests of the SCC under central load application. Simulia Abaqus software package is used for the purpose of calculations. The CDP model is used for modelling of concrete deformations, and bilinear diagrams with hardening are used for modelling of reinforcement deformations.

Results. Experimental data on the deformations of the slab-column connection under longitudinal force loading and realization of the push-through mode are obtained. Taking into account the selected damage levels and experimental data, calculations of the monolithic frame with different damage scenarios in the investigated nodes are carried out. The nature of force redistribution for frames with different levels of such damage and the degree of their danger in the realization of progressive failure are established.

Conclusions. It is determined that damages in the nodes of column and girderless slabs interfaces can lead to redistribution of forces and changes in the character of slab operation. These changes can initiate progressive failure in emergency situations in case of structural solutions of nodes with two-sided and three-sided design contours in terms of CP 63.13330 for push-through calculations. Additional design justification is required for such nodes.

About the Authors

A. V. Alekseytsev
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Anatoly V. Alekseytsev — Doctor of Technical Sciences, Associate Professor of the Department of Reinforced Concrete and Masonry Structures

26 Yaroslavskoe shosse, Moscow, 129337

Scopus: 57191530761, ResearcherID: I-3663-2017



M.  D. Antonov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Mikhail D. Antonov — postgraduate student of the Department of Reinforced Concrete and Masonry Structures

26 Yaroslavskoe shosse, Moscow, 129337

RSCI AuthorID: 1101963



References

1. Adam J.M., Parisi F., Sagaseta J., Lu X. Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures. 2018; 173:122-149. DOI: 10.1016/j.engstruct.2018.06.082

2. Tamrazyan A.G., Alekseytsev A.V. Optimal structures design: accounting of costs and relative accidents risk. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2019; 14(7):819-830. DOI: 10.22227/1997-0935.2019.7.819-830. EDN HUIEAL. (rus.).

3. Tamrazyan A.G. To analyze the junction of flat slabs and columns during punching. Safety of the Russian construction fund. Safety of the Russian construction fund. Problems and solutions : materials of International Academic Readings. 2020; 101-109. EDN HSMPUN. (rus.).

4. Zalesov A.S., Dorofeev V.S., Shekhovcov I.V. Strength and deformability of plates for punching. Concrete and Reinforced Concrete. 1992; 8:14-17. EDN OUCCKB. (rus.).

5. Filatov V.B., Bubnov E.P. Experimental investigation of punching shear strength of flat reinforced concrete slabs. Industrial and Civil Engineering. 2017; 2:86-91. EDN YFPWRB. (rus.).

6. Muttoni A. Punching shear strength of reinforced concrete slabs without transverse reinforcement. ACI structural Journal. 2008; 105(4). DOI: 10.14359/19858

7. Gardner N.J., Huh J., Chung L. Lessons from the Sampoong department store collapse. Cement and Concrete Composites. 2002; 24(6):523-529. DOI: 10.1016/s0958-9465(01)00068-3

8. Wood J.G.M. Pipers row car park collapse: Identifying risk. Concrete. 2003; 37(9):29-31.

9. Kabantsev O.V., Gorbatov S.V., Pesin K.O. Estimation of local defects of loaded slabs considering a step change in design diagram. Journal of Construction and Architecture. 2015; 2(49):89-108. EDN TOLUXH. (rus.).

10. Liu J., Tian Y., Orton S.L., Said A.M. Resistance of flat-plate buildings against progressive collapse. I: Modeling of slab-column connections. Journal of Structural Engineering. 2015; 141(12). DOI: 10.1061/(asce)st.1943-541x.0001294

11. Yi W.J., Zhang F.Z., Kunnath S.K. Progressive collapse performance of RC flat plate frame structures. Journal of Structural Engineering. 2014; 140(9). DOI: 10.1061/(asce)st.1943-541x.0000963

12. Russell J.M., Owen J.S., Hajirasouliha I. Experimental investigation on the dynamic response of RC flat slabs after a sudden column loss. Engineering Structures. 2015; 99:28-41. DOI: 10.1016/j.engstruct.2015.04.040

13. Kabancev O.V., Mitrovic B. For the selection of characteristics of limit states of monolithic reinforced concrete systems for the mode of progressive drop. Textile Industry Technology. 2018; 6(378):234-241. EDN TTXZYZ. (rus.).

14. Kolchunov V.I., Kljueva N.V., Buhtijarova A.S. Strength of joints in spatial reinforced concrete frames of high rise buildings under actions beyond design basis. Building and Reconstruction. 2011; 5(37):21-32. EDN OIRNVV. (rus.).

15. Trekin N.N., Sarkisov D.Yu., Krylov V.V., Yvstafieva E.B., Andrian K.R. Strength of monolithic reinforced concrete slabs for punching under static and dynamic loading. Building and Reconstruction. 2022; 5(103):67-79. DOI: 10.33979/2073-7416-2022-103-5-67-79. EDN HCBULC. (rus.).

16. Micallef K., Sagaseta J., Ruiz M.F., Muttoni A. Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading. International Journal of Impact Engineering. 2014; 71:17-33. DOI: 10.1016/j.ijimpeng.2014.04.003

17. Ulaeto N. Numerical modelling of symmetric and asymmetric punching and post-punching shear responses of RC flat slabs. 11th European LS-DYNA Conference 2017. 2017.

18. Melo G., Regan P.E. Post-punching resistance of connections between flat slabs and interior columns. Magazine of Concrete Research. 1998; 50(4):319-327. DOI: 10.1680/macr.1998.50.4.319

19. Fernández Ruiz M., Mirzaei Y., Muttoni A. Post-punching behavior of flat slabs. ACI Structural Journal. 2013; 110(5). DOI: 10.14359/51685833

20. Tamrazyan A.G. Conceptual approaches to robustness assessment of building structures, buildings and facilities. Reinforced Concrete Structures. 2023; 3(3):62-74. DOI: 10.22227/2949-1622.2023.3.62-74. EDN IKRNWX. (rus.).

21. Kolchunov V.I., Savin S.Yu. Survivability criteria for reinforced concrete frame at loss of stability. Magazine of Civil Engineering. 2018; 4(80):73-80. DOI: 10.18720/MCE.80.7. EDN XYLDTF.

22. Lubliner J., Oliver J., Oller S., Onate E. A plastic-damage model for concrete. International Journal of Solids and Structures. 1989; 25(3):299-326. DOI: 10.1016/0020-7683(89)90050-4

23. Rasoul Z.M.R.A., Mtaher H.M.A. Accuracy of concrete strength prediction behavior in simulating punching shear behavior of flat slab using finite element approach in Abaqus. Periodicals of Engineering and Natural Sciences. 2019; 7(4):1933. DOI: 10.21533/pen.v7i4.943

24. Genikomsou A.S., Polak M.A. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures. 2015; 98:38-48. DOI: 10.1016/j.engstruct.2015.04.016

25. Alekseytsev A.V., Antonov M.D. Dynamics of reinforced concrete non-beam frames in case of damage to slabs punching. Building and Reconstruction. 2021; 4(96):23-34. DOI: 10.33979/2073-7416-2021-96-4-23-34. EDN UJXFML. (rus.).


Review

For citations:


Alekseytsev A.V., Antonov M.D. Resistance to progressive collapse of monolithic frames of buildings at localized damage of nodes from push-through. Vestnik MGSU. 2024;19(9):1454-1468. (In Russ.) https://doi.org/10.22227/1997-0935.2024.9.1454-1468

Views: 466


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)