Reliability factors for steel elements designed on the basis of computer numerical models
https://doi.org/10.22227/1997-0935.2024.10.1606-1616
Abstract
Introduction. Today, there is an increasing reliance on computer computational models to assess the load-bearing capacity of building structures. However, a very small number of studies address issues of ensuring the reliability of the obtained results. In the current design practice, the design reliability of structures is provided by a system of partial reliability factors that take into account the uncertainty of random variable and the accuracy of the model. Therefore, fixing the values of reliability factors or the methodology for determining them in the design standards is especially important.
Materials and methods. The proposed method for determining reliability factors and their values are based on the methods of reliability theory and probability theory. Statistical characteristics of random variables and accuracy of the computer model are based on the systematization, analysis and generalization of existing studies.
Results. The paper presents a system of reliability factors and a method for determining them for the studied construction solutions and standardized parameters of computer models. The results of studies of statistical characteristics of the measure of accuracy of computer models are presented. The values of conversion coefficients are proposed, which allow taking into account different models of the material, the degree of discretization and the values of imperfections.
Conclusions. In the field of design of building structures, two extreme cases of using computer numerical models from the position of knowledge of the studied object (for new structural solutions and for studied solutions) and two extreme cases from the position of knowledge of model parameters (validated (standardized) or non-validated (non-standardized) computer model parameters are used). Depending on the case under consideration, model verification procedures should be specified and ways to ensure design reliability should be assigned.
Keywords
About the Author
V. V. NadolskiBelarus
Vitali V. Nadolski — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Building Production Technologies; Associate Professor of the Department of Building Structures
267 Moskovskaya st., Brest, 224017;
65 Independence avenue, Minsk, 220013
RISC AuthorID: 859575, Scopus: 56153169800
References
1. Kövesdi B., Alcaine J., Dunai L., Braun B. Interaction behaviour of steel I-girders Part I: Longitudinally unstiffened girders. Journal of Constructional Steel Research. 2014; 103:327-343. DOI: 10.1016/j.jcsr.2014.06.018
2. Prokop J., Vičan J., Jošt J. Numerical analysis of the beam-column resistance compared to methods by European standards. Applied Sciences. 2021; 11(7):3269. DOI: 10.3390/app11073269
3. Nadolski V., Marková J., Podymako V., Sýkora M. On Development of numerical resistance models of thin-web steel girders. Transactions of the VSB — Technical University of Ostrava, Civil Engineering Series. 2023; 23(1):12-19. DOI: 10.35181/tces-2023-0003
4. Kovacevic S., Markovic N., Sumarac D., Salatic R. Influence of patch load length on plate girders. Part II: Numerical research. Journal of Constructional Steel Research. 2019; 158:213-229. DOI: 10.1016/j.jcsr.2019.03.025
5. Belyy G.I., Kubasevich A.E. Effect of fatigue cracks in the wall on the strength of crane beams. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(11):1780-1790. DOI: 10.22227/1997-0935.2023.11.1780-1790 (rus.).
6. Matveev A.D. Multigrid finite element method in the calculations of composite beams of irregular shape. Reshetnev Readings. 2018; 1:568-569. EDN YTFBAD. (rus.).
7. Ustimenko E.E., Skachkov S.V. Method finite elements thin-walled profile shelves surround the nishing. Engineering journal of Don. 2019; 4(55):54. EDN KSJBFE. (rus.).
8. Martynenko T.M., Pronkevich S.A., Martynenko I.M., Maximovich V.A. Strength analysis of junction joints for different design performances on the basis of simulation in the ANSYS software. Mechanics. Researches and Innovations. 2022; 15:147-151. EDN QHUBTE. (rus.).
9. Frolov A.V., Voronov M.V., Medeltsev A.A., Sedova K.A., Shapovalov P.A. Modeling of the stress-strainstate of welded joints in ANSYS mechanical. Izvestiya Tula State University. 2022; 11:61-76. DOI: 10.24412/2071-6168-2022-11-61-76. EDN UTPZGM. (rus.).
10. Palaev А.G., Nosov V.V., Krasnikov А.А. Simulating distribution of temperature fields and stresses in welded joint using ANSYS. Science and Technologies: Oil and Oil Products Pipeline Transportation. 2022; 12(5):461-469. DOI: 10.28999/2541-9595-2022-12-5-461-469. EDN YWMJEF. (rus.).
11. Nadolski V.V. Statistical characteristics of the numerical model uncertainties for steel elements. Building and Reconstruction. 2023; 3(107):17-34. DOI: 10.33979/2073-7416-2023-107-3-17-34. EDN TNLEVH. (rus.).
12. Fieber A., Gardner L., Macorini L. Design of structural steel members by advanced inelastic analysis with strain limits. Engineering Structures. 2019; 199:109624. DOI: 10.1016/j.engstruct.2019.109624
13. Alekseev A.K., Bondarev A.E. On a posteriori estimation of the approximation error norm for an ensemble of independent solutions. Siberian Journal on Numerical Mathematics. 2020; 23(3):233-248. DOI: 10.15372/SJNM20200301. EDN TLUUTP. (rus.).
14. Britov G.S. Verification, validation and testing of computer models of linear dynamic systems. Information and Control Systems. 2013; 2(63):75-82. EDN PYPBYF. (rus.).
15. Nadolski V.V. Evaluating the design value of the bearing capacity of steel elements designed using numerical models. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(3):367-378. DOI: 10.22227/1997-0935.2023.3.367-378 (rus.).
16. Salnikov A.V., Frantsuzov M.S., Vinogradov K.A., Pyatunin K.R., Nikulin A.S. Digital simulation verification and validation. BMSTU Journal of Mechanical Engineering. 2022; 9(750):100-115. DOI: 10.18698/0536-1044-2022-9-100-115. EDN CUFIKS. (rus.).
17. Borisov E.A., Teplov A.V. Features of software quality control. Science Through the Prism of Time. 2020; 1(34):27-29. EDN KUTVJO. (rus.).
18. Tur V.V., Tur A.V., Lizahub A.Al. Experimental and theoretical study of the reinforced concrete flat slabs with the central support loss. Building and Reconstruction. 2023; 1(105):77-103. DOI: 10.33979/2073-7416-2023-105-1-77-103. EDN HIIQFH.
19. Perelmuter A.V., Tur V.V. Whether we are ready to proceed to a nonlinear analysis at designing? International Journal for Computational Civil and Structural Engineering. 2017; 13(3):86-102. EDN ZRKJPX. (rus.).
20. Afenchenko D.S., Petrova Yu.N., Ustinova M.E., Olejnikova R.E. Verification of analytical calculation of perforated rod bearing capacity by means of ANSYS finite element complex. Bulletin of the Kerch State Marine Technological University. 2019; 4:118-129. EDN CXAONF. (rus.).
21. Sinur F., Beg D. Moment–shear interaction of stiffened plate girders — Tests and numerical model verification. Journal of Constructional Steel Research. 2013; 85:116-129. DOI: 10.1016/j.jcsr.2013.03.007
22. Graciano C., Ayestarán A. Steel plate girder webs under combined patch loading, bending and shear. Journal of Constructional Steel Research. 2013; 80:202-212. DOI: 10.1016/j.jcsr.2012.09.018
23. Teichgräber M., Köhler J., Straub D. Hidden safety in structural design codes. Engineering Structures. 2021; 257:114017. DOI: 10.1016/j.engstruct.2022.114017
24. Teichgräber M., Köhler J., Straub D. Über den Umgang mit versteckten Sicherheiten — Eine Fallstudie am Windlastmodell des Eurocode. Baustatik — Baupraxis. 2020; 14:1059-1069.
25. Laím L., Rodrigues J.P.C., Simões da Silva L. Experimental and numerical analysis on the structural behaviour of cold-formed steel beams. Thin-Walled Structures. 2013; 72:1-13. DOI: 10.1016/j.tws.2013.06.008
26. Girão Coelho A.M., Simões da Silva L., Bijlaard F.S.K. Finite-element modeling of the nonlinear behavior of bolted t-stub connections. Journal of Structural Engineering. 2006; 132(6):918-928. DOI: 10.1061/(asce)0733-9445(2006)132:6(918)
27. Simões da Silva L., Rebelo C., Nethercot D., Marques L., Simões R., Vila Real P.M.M. Statistical evaluation of the lateral–torsional buckling resistance of steel I-beams. Part 2: Variability of steel properties. Journal of Constructional Steel Research. 2009; 65(4):832-849. DOI: 10.1016/j.jcsr.2008.07.017
28. Kala Z., Melcher J., Puklický L. Material and geometrical characteristics of structural steels based on statistical analysis of metallurgical products. Journal of Civil Engineering and Management. 2009; 15(3):299-307. DOI: 10.3846/1392-3730.2009.15.299-307
29. Nadolski V.V. Reliability coefficients for nonlinear models of load-bearing capacity of beams with flexible web. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(6):852-863. DOI: 10.22227/19970935.2023.6.852-863 (rus.).
30. Kala Z. Sensitivity assessment of steel members under compression. Engineering Structures. 2009; 31(6):1344-1348. DOI: 10.1016/j.engstruct.2008.04.001
31. Agüero A., Pallarés L., Pallarés F.J. Equivalent geometric imperfection definition in steel structures sensitive to flexural and/or torsional buckling due to compression. Engineering Structures. 2015; 96:160-177. DOI: 10.1016/j.engstruct.2015.03.065
32. Kala Z., Kala J., Simos T.E., Psihoyios G., Tsitouras Ch., Anastassi Z. Sensitivity Analysis of Stability Problems of Steel Structures using Shell Finite Elements and Nonlinear Computation Methods. AIP Conference Proceedings. 2011; 1865-1868. DOI: 10.1063/1.3636974
33. Saiyan S.G., Paushkin A.G. The numerical parametric study of the stress-strain state of I-beams having versatile corrugated webs. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2021; 16(6):676-687. DOI: 10.22227/1997-0935.2021.6.676-687 (rus.).
34. Kala Z. Sensitivity of load-carrying capacity of a thin-walled steel member to the initial curvature shape of its axis. Thin-Walled Structures. 2018; 835-842. DOI: 10.1201/9781351077309-96
35. Kala Z. Global sensitivity analysis in stability problems of steel frame structures. Journal of Civil Engineering and Management. 2016; 22(3):417-424. DOI: 10.3846/13923730.2015.1073618
36. Sykora M., Nadolski V., Novak L., Novak D., Diamantidis D. Pilot comparison of semi-probabilistic methods applied to RC structures with multiple failure modes. Proceedings of fib International Congress. 2022; 10-20.
37. Soloveva A.A., Solovev S.A. Reliability analysis of planar steel trusses based on p-box models. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2021; 16(2):153-167. DOI: 10.22227/1997-0935.2021.2.153-167 (rus.).
38. Solovev S.A., Soloveva A.A. Method of structural reliability analysis based on boundary distribution functions. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(10):1545-1555. DOI: 10.22227/19970935.2023.10.1545-1555 (rus.).
Review
For citations:
Nadolski V.V. Reliability factors for steel elements designed on the basis of computer numerical models. Vestnik MGSU. 2024;19(10):1606-1616. (In Russ.) https://doi.org/10.22227/1997-0935.2024.10.1606-1616