The influence of sandblasting mode on the surface roughness of friction joints
https://doi.org/10.22227/1997-0935.2025.4.516-528
Abstract
Introduction. In current practice, the operation of friction bolted joints of steel elements is evaluated based on the coefficient of friction and the bolt tension force. The coefficient of friction depends on the condition of the contact surfaces. Various constructive methods are used to increase it. The most effective way to prepare the contact surfaces of friction joints or bolt joints with controlled tension is sandblasting, which creates the highest coefficient of friction. Most of the existing design standards specify that the treatment of contact surfaces is specified in the design documentation. Additionally, it is specified that the roughness of the contact surface after processing should be no more than Rz 40. Measuring the roughness of the treated surface on the installation site is quite a difficult task, therefore it is necessary to understand exactly how different modes of sandblasting or deviations from the prescribed regime affect the surface roughness, which can lead to lower values of the coefficient of friction.
Materials and methods. In this paper, the properties of 5 different modes of sandblasting contact surfaces with quartz sand on the roughness of 15 steel plates made of low-alloy steel 09G2C, made on a profilometer M. ERA Platinum D1, were studied.
Results. A total of 20 tests were carried out to determine the roughness with the construction of surface profiles and the determination of the average values of Ra and Rz. It was shown that the proposed processing modes create different roughness on the surface of steel plates. One of the modes creates the highest average roughness value.
Conclusions. Conclusions are drawn about the correlation between the processing mode and the surface roughness. The results obtained were compared with other traditional constructive methods of processing contact surfaces.
Keywords
About the Authors
A. A. VasilkinRussian Federation
Andrey A. Vasil′kin — Candidate of Technical Sciences, Associate Professor of the Department of Metal and Wooden Structures
26 Yaroslavskoe shosse, Moscow, 129337
RSCI AuthorID: 636406, Scopus: 57192557109
I. A. Vasilkin
Russian Federation
Ilya A. Vasilkin — student
26 Yaroslavskoe shosse, Moscow, 129337
References
1. Ivkovic B., Durdjanovic M., Stamenkovic D. The Influence of the contact surface roughness on the static friction coefficient. Tribology in Industry. 2000; 22(3-4):41-44.
2. Tusnin A.R., Tikhonov S.M., Alekhine V.N., Belyaeva Z.V., Kudryavtsev S.V., Rybakov V.A. et al. Design of metal structures. Part 1. Metal structures. Materials and design principles: textbook for universities. Moscow, Pero Publishing House, 2020; 468. EDN BQNCPS. (rus.).
3. Hogan T.J., Munter S.A. Design Guide 1: Bolting in Structural Steel Connections. Australia, Australian Steel Institute, 2007.
4. Wang Y., Guan J., Zhang Y., Yang L. Experimental Research on Slip Factor in Bolted Connection with Stainless Steel. Journal of Shenyang Jianzhu University (Natural Science). 2013; 29(5):769-774.
5. Stranghöner N., Afzali N., de Vries P., Schedin E., Pilhagen J. Slip factors for slip-resistant connections made of stainless steel. Journal of Constructional Steel Research. 2019; 152:235-245. DOI: 10.1016/j.jcsr.2018.07.005
6. Stranghöner N., Afzali N., de Vries P., Schedin E., Pilhagen J., Cardwell S. Slip-resistant bolted connections of stainless steel. Steel Construction. 2017; 10(4):333-343. DOI: 10.1002/stco.201710044
7. Zhang T., Bu Y., Wang Y., Chen Z., He W. Experimental Study on the Slip Behaviour of Stainless Steel High-Strength Bolted Connections with a New Surface Treatment. Materials. 2022; 15(16):5672. DOI: 10.3390/ma15165672
8. Cruz А., Simões R., Alves R. Slip factor in slip resistant joints with high strength steel. Journal of Constructional Steel Research. 2012; 70:280-288. DOI: 10.1016/j.jcsr.2011.11.001
9. Heistermann C., Veljkovic M., Simões R., Rebelo C., da Silva L.S. Design of slip resistant lap joints with long open slotted holes. Journal of Constructional Steel Research. 2013; 82:223-233. DOI: 10.1016/j.jcsr.2012.11.012
10. Annan C.-D., Chiza A. Slip resistance of metalized–galvanized faying surfaces in steel bridge construction. Journal of Constructional Steel Research. 2014; 95:211-219. DOI: 10.1016/j.jcsr.2013.12.008
11. Maiorana E., Zampieri P., Pellegrino C. Experimental tests on slip factor in friction joints: comparison between European and American Standards. Frattura ed Integrità Strutturale. 2017; 12(43):205-217. DOI: 10.3221/IGF-ESIS.43.16
12. Chander K.P., Vashista M., Sabiruddin K., Paul S., Bandyopadhyay P.P. Effects of grit blasting on surface properties of steel substrates. Materials & Design. 2009; 30(8):2895-2902. DOI: 10.1016/j.matdes.2009.01.014
13. Day J., Huang X., Richards N. Examination of a grit-blasting process for thermal spraying using statistical methods. Journal of Thermal Spray Technolo-gy. 2005; 14(4):471-479. DOI: 10.1361/105996305x-76469
14. Varacalle D.J., Guillen D.P., Deason D.M., Rhodaberger W., Sampson E. Effect of grit-blasting on substrate roughness and coating adhesion. Journal of Thermal Spray Technology. 2006; 15(3):348-355. DOI: 10.1361/105996306x124347
15. Mohammadi Z., Ziaei-Moayyed A., Sheikh-Mehdi Mesgar A. Grit blasting of Ti–6Al–4V alloy: optimization and its effect on adhesion strength of plasma-sprayed hydroxyapatite coatings. Journal of Materials Processing Technology. 2007; 194(1-3):15-23. DOI: 10.1016/j.jmatprotec.2007.03.119
16. Rudawska A., Danczak I., Maller M., Valasek P. The effect of sandblasting on surface properties for adhesion. International Journal of Adhesion and Adhesives. 2016; 70:176-190. DOI: 10.1016/j.ijadhadh.2016.06.010
17. Khan A.A., Al Kheraif A.A., Alhijji S.M., Matinlinna J.P. Effect of grit-blasting air pressure on adhesion strength of resin to titanium. International Journal of Adhesion and Adhesives. 2016; 65:41-46. DOI: 10.1016/j.ijadhadh.2015.11.003
18. Li J., Li Y., Huang M., Xiang Y., Liao Y. Improvement of aluminum lithium alloy adhesion performance based on sandblasting techniques. International Journal of Adhesion and Adhesives. 2018; 84:307-316. DOI: 10.1016/j.ijadhadh.2018.04.007
19. Caravaca C., Flamant Q., Anglada M., Gremillard L., Chevalier J. Impact of sandblasting on the mechanical properties and aging resistance of alumina and zirconia based ceramics. Journal of the European Ceramic Society. 2018; 38(3):915-925. DOI: 10.1016/j.jeurceramsoc.2017.10.050
20. Okada M., Taketa H., Torii Y, Irie M., Matsumoto T. Optimal sandblasting conditions for conventional-type yttria-stabilized tetragonal zirconia polycrystals. Dental Materials. 2019; 35(1):169-175. DOI: 10.1016/j.dental.2018.11.009
21. Wang H., Zhu R., Lu Y., Xiao G., He K., Yuan Y. et al. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique. Applied Surface Science. 2014; 292:204-212. DOI: 10.1016/j.apsusc.2013.11.115
22. Multigner M., Frutos E., Gonzalez-Carrasco J., Jimenez J., Marn P., Ibanez J. Influence of the sandblasting on the subsurface microstructure of 316LVM stainless steel: implications on the magnetic and mechanical properties. Materials Science and Engineering: C. 2009; 29(4):1357-1360. DOI: 10.1016/j.msec.2008.11.002
23. Li X., Ye J., Zhang H., Feng T., Chen J., Hu X. Sandblasting induced stress release and enhanced adhesion strength of diamond films deposited on austenite stainless steel. Applied Surface Science. 2017; 412:366-373. DOI: 10.1016/j.apsusc.2017.03.214
24. Ho B., Tsoi J., Liu D., Lung C.Y. K., Wong H., Matinlinna J.P. Effects of sandblasting distance and angles on resin cement bonding to zirconia and titanium. International Journal of Adhesion and Adhesives. 2015; 62:25-31. DOI: 10.1016/j.ijadhadh.2015.06.009
25. Sorrentino L., Polini W., Bellini C., Parodo G. Surface treatment of CFRP: influence on single lap joint performances. International Journal of Adhesion and Adhesives. 2018; 85:225-233. DOI: 10.1016/j.ijadhadh.2018.06.008
26. Watanabe I., Kurtz K., Kabcenell J., Okabe T. Effect of sandblasting and silicoating on bond strength of polymer-glass composite to cast titanium. The Journal of Prosthetic Dentistry. 1999; 82(4):462-467. DOI: 10.1016/s0022-3913(99)70035-1
27. Vasilkin A., Akhmetzyanov R., Zubkov G., Vasilkin I. Experimental determination of the tightening coefficient of bolts according to the DIN standard. E3S Web of Conferences. 2021; 389:01080. DOI: 10.1051/e3sconf/202338901080
28. Vasilkin A.A., Zubkov G.V., Prokaev S.A., Vasilkin I.A. Friction area size of the friction bolted connection. Construction: Science and Education. 2024; 14(1):61-72. DOI: 10.22227/2305-5502.2024.1.4. EDN NAXLLQ. (rus.).
29. Poorna Chander K., Vashista M., Sabiruddin K., Paul S., Bandyopadhyay P.P. Effects of grit blasting on surface properties of steel substrates. Materials & Design. 2009; 30(8):2895-2902. DOI: 10.1016/j.matdes.2009.01.014
30. Bechikh A., Klinkova O., Maalej Y., Tawfiq I., Nasri R. Sandblasting parameter variation effect on galvanized steel surface chemical composition, roughness and free energy. International Journal of Adhesion and Adhesives. 2020; 102:102653. DOI: 10.1016/j.ijadhadh.2020.102653
31. Momber A.W., Wong Y.C., Budidharm E. Hydrodynamic profiling and grit blasting of low-carbon steel surfaces. Tribology International. 2002; 35(4):271-281. DOI: 10.1016/s0301-679x(02)00009-9
32. Chesnokov A.S., Knyazhev A.F. Shear-resistant joints with high-strength bolts. Moscow, Stroyizdat, 1974; 120. (rus.).
Review
For citations:
Vasilkin A.A., Vasilkin I.A. The influence of sandblasting mode on the surface roughness of friction joints. Vestnik MGSU. 2025;20(4):516-528. (In Russ.) https://doi.org/10.22227/1997-0935.2025.4.516-528