Computational algorithm for calculating the stress-strain state and buckling of thin-walled shells
https://doi.org/10.22227/1997-0935.2025.6.850-866
Abstract
Introduction. The studies of the processes of deformation of shells are mainly carried out using computational algorithms that implement the application of various numerical methods. These algorithms must ensure obtaining accurate results and high speed of calculations, and must also be resistant to changes in input parameters (geometry, material). The purpose of this work is to develop a computational algorithm for calculating the stress-strain state (SSS) and buckling of shells, based on the application of the Ritz method and the Newton method, ensuring high productivity and stability of the solution.
Materials and methods. The deformation of shell structures is described by a geometrically nonlinear mathematical model of the Timoshenko – Reissner type, which considers transverse shears and orthotropy of the material. The mathematical model is written as a functional of the total potential energy of deformation of the shell. The study of the stress-strain state and buckling of the structure is reduced to finding the minimum of the functional. Using the Ritz method, this problem is reduced to solving a system of nonlinear algebraic equations. The solution of the resulting system is carried out using the Newton method. A distinctive feature of this algorithm is the use of an adaptive step by load when solving a system of nonlinear algebraic equations.
Results. Calculations of structures were performed: shallow shells of double curvature and cylindrical panels made of isotropic and orthotropic materials. The obtained values of critical loads have good agreement with the results of other authors: for shallow shells of double curvature, the maximum discrepancy of results was 8,05 %, and for cylindrical panels 7,29 %.
Conclusions. A computational algorithm for calculating the stress-strain state and buckling of shells that is stable to changes in geometry and material of the structure has been developed. High performance of the algorithm is ensured by using an adaptive step by load when solving a system of nonlinear algebraic equations. The possibility of using this algorithm when studying shallow shells of double curvature and cylindrical panels has been substantiated.
About the Authors
N. A. MishurenkoRussian Federation
Nikolai A. Mishurenko — postgraduate student, senior lecturer of the Department of Information Systems and Technologies;
4, 2nd Krasnoarmeyskaya st., Saint Petersburg, 190005;
16/13 Suvorovsky ave., Saint Petersburg, 191036
RSCI AuthorID: 1122500, ResearcherID: AHB-4673-2022
A. A. Semenov
Russian Federation
Alexey A. Semenov — Doctor of Technical Sciences, Associate Professor, Professor of the Department of Information Systems and Technologies
4, 2nd Krasnoarmeyskaya st., Saint Petersburg, 190005
RSCI AuthorID: 648893, Scopus: 56460436800, ResearcherID: N-1075-2013
References
1. Sokolov V.G., Razov I.O., Volynec S.I. Investigation of free oscillationsof thin-walled straight-line gas pipe lines of large diameter at semi-underground laying. Bulletin of civil engineers. 2019; 6(77):149-156. P. 149–156. DOI: 10.23968/1999-5571-2019-16-5-149-156. EDN EGOGDV. (rus.).
2. Grishin I.V., Kayumov R.A. Simplified multilayered slab equation describing asphalt concrete pavements of metal bridges. News KSUAE. 2022; 4(62):119-128. DOI: 10.52409/20731523_20224119. EDN FDJBZY. (rus.).
3. Vasilkin А.А. Control of Actions of Steel Tank in Working. Proceedings of the Southwest State University. 2018; 4(79):66-74. DOI: 10.21869/2223-1560-2018-22-4-66-74. EDN YQVOJN. (rus.).
4. Vescovini R., Oliveri V., Pizzi D., Dozio L., Weaver P.M. A semi-analytical approach for the analysis of variable-stiffness panels with curvilinear stiffeners. International Journal of Solids and Structures. 2020; 188-189:244-260. DOI: 10.1016/j.ijsolstr.2019.10.011
5. Kuznetsova V.O. On the issue of taking into account the kinetics of hydrogenation on the limiting state of spherical shells made of titanium alloy. Construction, Buildings and Structures. 2024; 2(7):4-14. EDN SZJYCD. (rus.).
6. Zheleznov L.P. Nonlinear Deformation and Stability of a Composite Cylindrical Shell under a Combined Loading by a Bending Moment and an Edge Transverse Force. BMSTU Journal of Mechanical Engineering. 2022; 8(749):84-95. DOI: 10.18698/0536-1044-2022-8-84-95. EDN XAAWGI. (rus.).
7. Tumashik G.A., Frumen A.I. Study of static and dynamic strength of a cylindrical shell in contact with a circular diaphragm. Aerospace MAI Journal. 2012; 19(5):192-196. EDN PIGEEH. (rus.).
8. Ovchinnikov I.I., Ovchinnikov I.G. Modeling and optimal design of circular plates interacting with aggressive environments. Tyumen, Industrial University of Tyumen, 2023; 198. EDN QZDQRC. (rus.).
9. Ghaiasvand A., Rashid H.A. Numerical and experimental analysis of buckling and post buckling in cylindrical shells with circular cutout. Computations and Simulations in Mechanical Science. 2018; 1(2):24-28.
10. Turkov A.V., Poleshko S.I. Investigation of deflections and natural vibration frequencies of circular isotropic plates of variable thickness according to the law of square parabola with thickening to the support. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(8):1212-1219. DOI: 10.22227/1997-0935.2023.8.1212-1219. EDN MKTADU. (rus.).
11. Pyatikrestovsky K.P., Travush V.I. Experimental studies on the nature of the VAT plywood sheathing as part of spatial structures. Proceedings of the Southwest State University. 2015; 5(62):36-42. EDN VHNOAJ. (rus.).
12. Dewangan H.Ch., Panda S.K. Nonlinear Thermoelastic Numerical Frequency Analysis and Experimental Verification of Cutout Abided Laminated Shallow Shell Structure. Journal of Pressure Vessel Technology, Transactions of the ASME. 2022; 144(6). DOI: 10.1115/1.4054843. EDN AQYBRW.
13. Jiao P., Chen Z., Xu F., Tang X., Su W. Effects of ringed stiffener on the buckling behavior of cylindrical shells with cutout under axial compression: Experimental and numerical investigation. Thin-Walled Structures. 2018; 123:232-243. DOI: 10.1016/j.tws.2017.11.013
14. Bauer S.M., Venatovskaya L.A., Voronkova E.B. Solid mechanics models in application to ophthalmology. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy. 2023; 10(4):686-712. DOI: 10.21638/spbu01.2023.407. EDN UJNCGP. (rus.).
15. Treshchev A.A. About mechanical tests of thin-walled cylindrical shells made of composite materials. Izvestiya Tula State University. Technical Sciences. 2023; 7:90-97. DOI: 10.24412/2071-6168-2023-7-90-91. EDN ANDSZH. (rus.).
16. Petrov V.V. Calculation of Inhomogeneous Thickness of Shells with Considering Physical and Geometrical Nonlinearities. Academia. Architecture and Construction. 2016; 1:112-117. EDN VNRSEV. (rus.).
17. Krivoshapko S.N., Aleshina O.O., Ivanov V.N. Static analysis of shells with middle surfaces containing the main frame from three given superellipses. Structural Mechanics and Analysis of Constructions. 2022; 6(305):18-27. DOI: 10.37538/0039-2383.2022.6.18.27. EDN DIBIMW. (rus.).
18. Li Sh.Ch., Zhang Yu.Ch., Chang Le., Zhou Ch.Yu., He X.H. Research on Buckling Load of Cylindrical Shell with an Inclined through Crack under External Pressure and Its Solution. Metals. 2023; 13(1):174. DOI: 10.3390/met13010174. EDN YKYTUZ.
19. Pinto V.T., Rocha L.A. O., Fragassa C., dos Santos E., Isoldi L.A. Multiobjective Geometric Analysis of Stiffened Plates under Bending through Constructal Design Method. Journal of Applied and Computational Mechanics. 2020; 6:1438-1449. DOI: 10.22055/jacm.2020.35248.2608
20. Castro S.G.P., Jansen E.L. Displacement-based formulation of Koiter’s method: Application to multi-modal post-buckling finite element analysis of plates. Thin-Walled Structures. 2021; 159:107217. DOI: 10.1016/j.tws.2020.107217
21. Klochkov Yu.V., Pshenichkina A.P., Nikolaev A.P., Marchenko S.S., Vakhnina O.V., Klochkov M.Yu. Calculation of Shells of Revolution with the Use of a Mixed FEM with a Vector Approximation Procedure. Journal of Machinery Manufacture and Reliability. 2024; 53(1):10-21. DOI: 10.1134/S1052618824010059. EDN HHDCXB.
22. Sagdatullin M.K. Numerical modeling of nonlinear deformation processes for shells of medium thickness. Structural Mechanics of Engineering Constructions and Buildings. 2023; 19(2):130-148. DOI: 10.22363/1815-5235-2023-19-2-130-148. EDN KNCSOD. (rus.).
23. Kayumov R.A. Large deflections, loss of stability and over-critical behavior of sloping panels and arches of variable thickness on an elastic base. PNRPU Mechanics Bulletin. 2024; 2:33-41. DOI: 10.15593/perm.mech/2024.2.04. EDN KFDQBX. (rus.).
24. Liew K.M., Lim C.W. Vibration of perforated doubly-curved shallow shells with rounded corners. International Journal of Solids and Structures. 1994; 31(11):1519-1536. DOI: 10.1016/0020-7683(94)90012-4
25. Young P.G., Yuan J., Dickinson S.M. Three-Dimensional Analysis of the Free Vibration of Thick Rectangular Plates With Depressions, Grooves or Cut-Outs. Journal of Vibration and Acoustics. 1996; 118(2):184-189. DOI: 10.1115/1.2889647
26. Qatu M.S. Effect of inplane edge constraints on natural frequencies of simply supported doubly curved shallow shells. Thin-Walled Structures. 2011; 49(7):797-803. DOI: 10.1016/j.tws.2011.01.001. EDN OENDQJ.
27. Lam K.Y., Hung K.C., Chow S.T. Vibration analysis of plates with cutouts by the modified Rayleigh-Ritz method. Applied Acoustics. 1989; 28(1):49-60. DOI: 10.1016/0003-682X(89)90030-3
28. Aljawhary M.H., Al-Gahtani H.J. Boundary-type Ritz method for the analysis of arbitrarily shaped polygonal plates. Engineering Analysis with Boundary Elements. 2021; 130:124-134. DOI: 10.1016/j.enganabound.2021.05.008. EDN XXUFIY.
29. Milazzo A., Guarino G., Gulizzi V. Buckling and post-buckling of variable stiffness plates with cutouts by a single-domain Ritz method. Thin-Walled Structures. 2023; 182:110282. DOI: 10.1016/j.tws.2022.110282. EDN YXGIOP.
30. Karpov V.V., Kobelev E.A., Maslennikov A.M., Panin A.N. Ritz method in the discrete approximation of displacements for slab calculation. Architecture and Engineering. 2023; 8(4):57-67. DOI: 10.23968/2500-0055-2023-8-4-57-67. EDN FTPEME.
31. Grigolyuk E., Lopanitsyn E. Influence of axisymmetric initial imperfections of a spherical shell on its critical load. Izvestiya MGTU MAMI. 2008; 1(5):233-246. EDN LDMOJF. (rus.).
32. Kolesnikov A.G., Ivanov A.A. Stress-Strain State of Shallow Shell in an Elastic Foundation with Variable Strength Characteristics. Proceedings of the Southwest State University. 2023; 27(3):21-33. DOI: 10.21869/2223-1560-2023-27-3-21-33. EDN UGXEKY. (rus.).
33. Stupishin L.Yu., Nikitin K.Ye. Numerical Investigation of Forced Oscillations of Orthotropic Geometrically Non-linear Shallow Shells with the Use of the Finite Element Method in Mixed Form. Industrial and Civil Engineering. 2017; 6:28-33. EDN YUBOMD. (rus.).
34. Goloskokov D.P., Matrosov A.V. Method of initial functions in analyses of the bending of a thin orthotropic plate clamped along the contour. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes. 2021; 17(4):330-344. DOI: 10.21638/11701/spbu10.2021.402. EDN RIFCWU. (rus.).
35. Tebyakin A.D., Krysko A.V., Zhigalov M.V., Krysko V.A. Elastic-plastic deformation of nanoplates. The method of variational iterations (extended Kantorovich method). Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2022; 22(4):494-505. DOI: 10.18500/1816-9791-2022-22-4-494-505. EDN KFJVBH. (rus.).
36. Chesnokov A.V., Mikhailov V.V. Technique for obtaining the membrane stress ratio in a fabric arch-type shell. Proceedings of the Southwest State University. 2024; 28(2):37-55. DOI: 10.21869/2223-1560-2024-28-2-37-55. EDN LCSYWD. (rus.).
37. Yiotis A.J., Katsikadelis J.T. Buckling of cylindrical shell panels: a MAEM solution. Archive of Applied Mechanics. 2015; 85(9-10):1545-1557. DOI: 10.1007/s00419-014-0944-9
38. Khayrullin F.S., Sakhbiev O.M. Elastic-plastic analysis of shells by variational method on the basis of high-degree polynomials. Structural Mechanics of Engineering Constructions and Buildings. 2023; 19(4):349-361. DOI: 10.22363/1815-5235-2023-19-4-349-361. EDN WYVDDH. (rus.).
39. Netrebko A.V., Pshenichnov S.G. Nonstationary dynamic problem for visco-elastic cylindrical finite length shell. Izvestiya Tula State University. Natural Sciences. 2014; 4:63-79. EDN TDVEUR. (rus.).
40. Okonechnikov A.S., Tarlakovsky D.V., Fedotenkov G.V. Spatial Non-Stationary Contact Problem for a Cylindrical Shell and Absolutely Rigid Body. Mechanics of Solids. 2020; 55(3):366-376. DOI: 10.3103/S0025654420030127. EDN MRHREO.
41. Hosseini S., Rahimi G. Experimental and numerical analysis of hyperelastic plates using Mooney-Rivlin strain energy function and meshless collocation method. Engineering Analysis with Boundary Elements. 2023; 150:199-218. DOI: 10.1016/j.enganabound.2023.02.024
42. Korovaytseva E.A. On some features of soft shells of revolution static problems solution at large deformations. Trudy MAI. 2020; 114:3. DOI: 10.34759/trd-2020-114-04. EDN YYRPAW. (rus.).
43. Bakusov P.A., Semenov A.A. Analysis of the stability of the computational algorithm to a change in the geometric parameters of cylindrical shell structures. PNRPU Mechanics Bulletin. 2021; 1:12-21. DOI: 10.15593/perm.mech/2021.1.02. EDN ZIPFYC. (rus.).
44. Mishurenko N.A., Semenov A.A. Buckling of shallow shells of double curvature considering the presence of discretely introduced weakenings. News KSUAE. 2023; 3(65):6-17. DOI: 10.52409/20731523_2023_3_6. EDN ASJURD. (rus.).
45. Karpov V.V. The strength and stability of reinforced shells of revolution. Part 1. Models and algorithms of research of the strength and stability of supported shells of revolution. Moscow, Fizmatlit, 2010; 285. (rus.).
46. Vescovini R., Dozio L., D’Ottavio M., Polit O. On the application of the Ritz method to free vibration and buckling analysis of highly anisotropic plates. Composite Structures. 2018; 192:460-474. DOI: 10.1016/j.compstruct.2018.03.017
47. Van Campen D.H., Bouwman V.P., Zhang G.Q., Zhang J., ter Weeme B.J.W. Semi-analytical stability analysis of doubly-curved orthotropic shallow panels — considering the effects of boundary conditions. International Journal of Non-Linear Mechanics. 2002; 37(4-5):659-667. DOI: 10.1016/S0020-7462(01)00090-7
48. Smerdov A.A., Buyanov I.A., Chudnov I.V. Analysis of optimal combinations of requirements to developed CFRP for large space-rocket designs. BMSTU Journal of Mechanical Engineering. 2012; 8:70-77. EDN PBJFXB. (rus.).
49. Tsepennikov М.В., Povyshev I.A., Smetannikov O.Yu. Verification of numerical technique for composite structures failure modeling. Perm National Research Polytechnic University Bulletin. Applied Mathematics and Mechanics. 2012; 10:225-241. EDN PIEZDT. (rus.).
50. Wang X. Nonlinear stability analysis of thin doubly curved orthotropic shallow shells by the differential quadrature method. Computer Methods in Applied Mechanics and Engineering. 2007; 196(17-20):2242-2251. DOI: 10.1016/j.cma.2006.11.009. EDN MKDNZV.
51. Karpov V.V., Semenov A.A. Refined model of stiffened shells. International Journal of Solids and Structures. 2020; 199:43-56. DOI: 10.1016/j.ijsolstr.2020.03.019. EDN PNZVAI.
52. Semenov A.A. Strength and stability of geometrically nonlinear orthotropic shell structures. Thin-Walled Structures. 2016; 106:428-436. DOI: 10.1016/j.tws.2016.05.018. EDN WVMNLF.
53. Petrov D.S., Semenov A.A. Buckling analysis of an orthotropic cylindrical shell structure in the ANSYS Mechanical APDL software package. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2023; 23(3):618-627. DOI: 10.17586/2226-1494-2023-23-3-618-627. EDN IIAIEZ. (rus.).
Review
For citations:
Mishurenko N.A., Semenov A.A. Computational algorithm for calculating the stress-strain state and buckling of thin-walled shells. Vestnik MGSU. 2025;20(6):850-866. (In Russ.) https://doi.org/10.22227/1997-0935.2025.6.850-866