Regression-based method for calculation of the punching shear capacity of the slab
https://doi.org/10.22227/1997-0935.2025.6.867-887
Abstract
Introduction. At slab-column joints, where significant force is concentrated on a relatively small area of the support, punching shear failure of the slab may occur. This type of failure is accompanied by formation of the spatial failure surface called punching cone. The main factors influencing punching shear capacity are: energetic size effect, percentage of longitudinal reinforcement in the tensile zone of the slab, span to depth ratio, column perimeter to depth ratio. Lack of consideration for these factors in a calculation method may result in low accuracy. The purpose of this work is to develop a calculation method which takes into account the main factors affecting the punching shear capacity of the slab.
Materials and methods. The paper presents a comparison of the punching shear strength obtained in laboratory tests with domestic (CP 63.13330) and foreign (Eurocode 2, ACI 318-11, Model Code 2010) building codes. It is important to develop a more accurate method for calculation of punching shear strength of a slab. Coefficients of the method can be obtained by the least squares regression analysis using Levenberg – Marquardt algorithm based on the experimental data.
Results. As a result of the regression analysis, a calculation method for punching was obtained. The comparison of the punching shear strength obtained in laboratory tests with the described method is given.
Conclusions. The comparison showed that the obtained method has a higher compliance with the experimental data than the methods presented in a number of building codes. The developed method can be used to assess the punching shear strength of slabs and foundation with and without transverse reinforcement.
Keywords
About the Authors
A. M. BudarinRussian Federation
Alexander M. Budarin — chief specialist of the calculation justification department
2 Volokolamskoe shosse, Moscow, 125993
O. Yu. Ushakov
Russian Federation
Oleg Yu. Ushakov — Candidate of Technical Sciences, Associate Professor
19 Mira st., Yekaterinburg, 620002
Scopus: 57210969288, ResearcherID: B-4747-2016
L. S. Sabitov
Russian Federation
Linar S. Sabitov — Doctor of Technical Sciences, Professor
26 Yaroslavskoe shosse, Moscow, 129337
Scopus: 57079229700, ResearcherID: D-2999-2018
L. R. Mailyan
Russian Federation
Levon R. Mailyan — Doctor of Technical Sciences, Professor
1 Gagarin square, Rostov-on-Don, 344000
Scopus: 57192662909, ResearcherID: AAO-9095-2020
S. S. Sosnovskikh
Russian Federation
Sergey S. Sosnovskikh — postgraduate student of the Department of Computer-Aided Design Systems for Construction Projects
19 Mira st., Yekaterinburg, 620002
References
1. Lips S. Punching of Flat Slabs with Large Amounts of Shear Reinforcement : Ph.D. Thesis. Lausanne, 2012.
2. Beutel R., Hegger J. The effect of anchorage on the effectiveness of the shear reinforcement in the punching zone. Cement and Concrete Composites. 2002; 24(6):539-549. DOI: 10.1016/S0958-9465(01)00070-1
3. Kueres D. Two-parameter kinematic theory for punching shear in reinforced concrete slabs : Ph.D. Thesis. Aachen, 2018.
4. Simones J.T., Ruiz M.F., Muttoni A. Validation of the Critical Shear Crack Theory for punching of slabs without transverse reinforcement by means of a refined mechanical model. Structural Concrete. 2018; 19(1):191-216. DOI: 10.1002/suco.201700280
5. Staller M. Analytische und numerische Untersuchungen des Durchstanztragverhaltens punktgestützter Stahlbetonplatten : Ph.D. Thesis. Munich, 2000.
6. Lovorovich J.S., McLean D.I. Punching Shear Behavior of Slabs With Varying Span-Depth Ratios. ACI Structural Journal. 1990; 87(5):507-512. DOI: 10.14359/2616
7. Simones J.T. The mechanics of punching in reinforced concrete slabs and footings without shear reinforcement : Ph.D. Thesis. Lausanne, 2018.
8. Einpaul J. Punching strength of continuous flat slabs : Ph.D. Thesis. Lausanne, 2016.
9. Bažant P.Z., Cao Z. Size Effect in Punching Shear Failure of Slabs. ACI Structural Journal. 1987; 84(1):44-53. DOI: 10.14359/2785
10. Donmez A., Bažant Z.P. Size Effect on Punching Strength of Reinforced Concrete Slabs without and with Shear Reinforcement. ACI Structural Journal. 2017; 114(4):875-886. DOI: 10.14359/51689719
11. Bažant Z., Planas J. Fracture and size effect in concrete and other quasibrittle materials. New York, Routledge, 1998; 640. DOI: 10.1201/9780203756799
12. Oliveira D.R. C., Regan P., Melo G.S. Punching Resistance of RC Slabs with Rectangular Columns. Magazine of Concrete Research. 2004; 56(3):123-138. DOI: 10.1680/macr.56.3.123.36300
13. Mangalathu S., Shin H., Choi E., Jeon J. Explainable machine learning models for punching shear strength estimation of flat slabs without transverse reinforcement. Journal of Building Engineering. 2021; 39:102300. DOI: 10.1016/j.jobe.2021.102300
14. Truong D., To V., Truong G., Jang H. Engineering punching shear strength of flat slabs predicted by nature-inspired metaheuristic optimized regression system. Frontiers of Structural and Civil Engineering. 2024; 18(4):551-567. DOI: 10.1007/s11709-024-1091-1
15. Guandalini S., Burdet O., Muttoni A. Punching Tests of Slabs with Low Reinforcement Ratios. ACI Structural Journal. 2008; 106(1):87-95. DOI: 10.14359/56287
16. Reineck K.H., Beutel R., Duda H., Goossens D., Hallgren M., Kuchma D. et al. Fib Bulletin 12. Punching of structural concrete slabs. Fib Bulletins. 2001. DOI: 10.35789/fib.BULL.0012
17. Dieterle H., Rostasy F. Tragverhalten quadratischer Einzelfundamente aus Stahlbeton. Deutscher Ausschuss für Stahlbeton. 1987; 387:1-91. DOI: 10.2366/3702692
18. Rizk E. Punching shear of thick plates with and without shear reinforcement. ACI Structural Journal. 2011; 108(5):581-591. DOI: 10.14359/51683215
19. Li K.K.L. Influence of size on punching shear strength of concrete slabs : master’s thesis. Montreal, McGill University, 2000; 92.
20. Hegger J., Ricker M., Ulke B., Ziegler M. Investigations on the punching behaviour of reinforced concrete footings. Engineering Structures. 2007; 29(9):2233-2241. DOI: 10.1016/j.engstruct.2006.11.012
21. Siburg C., Hegger J. Experimental investigations on the punching behaviour of reinforced concrete footings with structural dimensions. Structural Concrete. 2014; 15(3):331-339. DOI: 10.1002/suco.201300083
22. Sistonen E., Lydman M., Huovinen S. Teräsbetonilaatan lävistyskapasiteetin laskentakaavan geometrinen malli. Talonrakennustekniikan laboratorio, Teknillinen korkeakoulu, Report No. 69, 1997.
23. Guidotti R. Poinçonnement Des Planchers-Dalles Avec Colonnes Superposées Fortement Sollicitées : Ph.D. Thesis. Lausanne, 2010.
24. Sagaseta J., Muttoni A., Ruiz M.F., Tassinari L. Non-axis-symmetrical punching shear around internal columns of RC slabs without transverse reinforcement. Magazine of Concrete Research. 2011; 63(6):441-457. DOI: 10.1680/macr.10.00098
25. Lips S., Ruiz M.F., Muttoni A. Experimental Investigation on Punching Strength and Deformation Capacity of Shear-Reinforced Slabs. ACI Structural Journal. 2012; 109(6):889-900. DOI: 10.14359/51684132
26. Kruger G., Burdet O., Favre R. Punching strength of R.C. Flat slabs with moment transfer. International Workshop on Punching Shear — Proceedings. 2000; 333-341.
27. Caldentey A.P., Lavaselli P.P., Corres H., Fer-nandez F.A. Influence of stirrup detailing on punching shear strength of flat slabs. Engineering Structures. 2013; 49:855-865. DOI: 10.1016/j.engstruct.2012.12.032
28. Bompa D., Onet T.P. Punching shear strength of RC flat slabs at interior connections to columns. Magazine of Concrete Research. 2015; 68(1):24-42. DOI: 10.1680/macr.14.00402
29. Urban T., Goldyn M., Krawczyk L. The analysis of the effectiveness of different types of punching shear reinforcement not fully anchored. Budownictwo i Architektura. 2013; 12(1):195-202. DOI: 10.35784/bud-arch.2192
30. Simões J.T., Bujnak J., Ruiz F.M., Muttoni A. Punching shear tests on compact footings with uniform soil pressure. Structural Concrete. 2016; 17(4):603-617. DOI: 10.1002/suco.201500175
31. Papanikolaou K.V., Tegos I.A., Kappos A.J. Punching shear testing of reinforced concrete slabs, and design implications. Magazine of Concrete Research. 2005; 57(3):167-177. DOI: 10.1680/macr.2005.57.3.167
32. Ozden S., Ersoy U., Ozturan T. Punching shear tests of normal- and high-strength concrete flat plates. Canadian Journal of Civil Engineering. 2006; 33(11):1389-1400. DOI: 10.1139/l06-089
33. Birkle G., Walter H.D. Influence of Slab Thickness on Punching Shear Strength. ACI Structural Journal. 2008; 105(2):180-188. DOI: 10.14359/19733
34. Al-Yousif A.T., Regan P.E. Punching resistances of RC slabs supported by large and/or elongated column. The Structural Engineer. 2003; 81(5):30-34
35. Binici B., Bayrak O. Punching Shear Strengthening of Reinforced Concrete Flat Plates Using Carbon Fiber Reinforced Polymers. Journal of Structural Engineering. 2003; 129(9):1173-1182. DOI: 10.1061/(ASCE)0733-9445(2003)129:9(1173)
36. Ghannoum C.M. Effect of high-strength concrete on the performance of slab-column specimens : master’s thesis. Montreal, McGill University, 1998.
37. Sissakis K., Sheikh S.A. Strengthening concrete slabs for punching shear with carbon fiber-reinforced polymer laminates. ACI Structural Journal. 2007; 104(1):49-59. DOI: 10.14359/18432
38. Li X. Punching Shear Behaviour of Slab-Column Connections : Ph.D. Thesis. Sheffield, 1997.
39. Esfahani M.R., Kianoush M.R., Moradi A.R. Punching Shear Strength of Interior Slab-Column Connections Strengthened with Carbon Fiber Reinforced Polymer Sheets. Engineering Structures. 2009; 31(7):1535-1542. DOI: 10.1016/j.engstruct.2009.02.021
40. Michel L., Ferrier E., Bigaud D., Agbossou A. Criteria for punching failure mode in RC slabs reinforced by externally bonded CFRP. Composite Structures. 2007; 81(3):438-449. DOI: 10.1016/j.compstruct.2006.09.008
41. Regan P.E., Samadian F. Shear Reinforcement against punching in reinforced concrete flat slabs. The Structural Engineer. 2001. 79(10):24-31.
42. Kim J.Y., Longworth J.M., Wight R.G., Green M.F. Punching Shear of Two-way Slabs Retrofitted with Prestressed or Non-prestressed CFRP Sheets. Journal of Reinforced Plastics and Composites. 2010; 29(8):1206-1223. DOI: 10.1177/0731684409103143
43. Rizk E., Marzouk H. Experimental validation of minimum flexural reinforcement for thick high-strength concrete plates. ACI Structural Journal. 2011; 108(3):332-340. DOI: 10.14359/51682349
44. Elshafey A.A., Rizk E., Marzouk H., Haddara M.R. Prediction of punching shear strength of two-way slabs. Engineering Structures. 2011; 33(5):1742-1753. DOI: 10.1016/j.engstruct.2011.02.013
45. Smadi M.M., Yasin I.S. Behavior of high-strength fibrous concrete slab–column connections under gravity and lateral loads. Construction and Building Materials. 2008; 22(8):1863-1873. DOI: 10.1016/j.conbuildmat.2007.04.023
46. Faria D.M.V., Lúcio V.J.G., Ramos A.P. Strengthening of flat slabs with post-tensioning using anchorages by bonding. Engineering Structures. 2011; 33(6):2025-2043. DOI: 10.1016/j.engstruct.2011.02.039
47. Cheng M.Y., Parra-Montesinos G. Evaluation of Steel Fiber Reinforcement for Punching Shear Resistance in Slab-Column Connections — Part I: Monotonically Increased Load. ACI Structural Journal. 2010; 107(1):101-109. DOI: 10.14359/51663394
48. Birkle G. Punching of Flat Slabs: The Influence of Slab Thickness and Stud Layout : Ph.D. Thesis. Calgary, 2004.
49. Etter S., Heinzmann D., Jäger T., Marti P. Versuche zum Durchstanzverhalten von Stahlbetonplatten. Hochschulverlag AG an der ETH Zürich, IBK Bericht 324, 2009. DOI: 10.3929/ethz-a-006077853
50. Hegger J., Häusler F., Ricker M. Zur maximalen Durchstanztragfähigkeit von Flachdecken. Beton- und Stahlbetonbau. 2007; 102(11):770-777. DOI: 10.1002/best.200700584
51. Lips S., Muttoni A., Ruiz F.M. Experimental Investigation on Punching Strength and Deformation Capacity of Shear-Reinforced Slabs. ACI Structural Journal. 2012; 109(6):889-900. DOI: 10.14359/51684132
52. Rizk E., Marzouk H., Hussein A. Punching Shear of Thick Plates with and without Shear Reinforcement. ACI Structural Journal. 2011; 108(5):581-591. DOI: 10.14359/51683215
53. Vollum R.L., Abdel-Fattah T., Eder M., Elghazouli A.Y. Design of ACI-type punching shear reinforcement to Eurocode 2. Magazine of Concrete Research. 2009; 62(1):3-16. DOI: 10.1680/macr.2008.62.1.3
54. Schmidt P., Kueres D., Hegger J. Punching shear behavior of reinforced concrete flat slabs with a varying amount of shear reinforcement. Structural Concrete. 2020; 21(1):235-246. DOI: 10.1002/suco.201900017
55. Siburg C., Ricker M., Hegger J. Punching shear design of footings: critical review of different code provisions. Structural Concrete. 2020; 15(4):497-508. DOI: 10.1002/suco.201300092
56. Starosolski W., Zbigniew P., Jasiński R., Drobiec D. Punching shear test of r/c slabs with double headed studs. Quality and Reliability in Building Industry. 1999; 1:81-96.
57. Korovin N.N., Golubev A.Yu. Punching shear of the thick reinforced concrete slabs. Concrete and Reinforced Concrete. 1989; 11:20-23. (rus.).
58. Levenberg K. Method for the Solution of Certain Non-Linear Problems in Least Squares. Quarterly of Applied Mathematics. 1944; 2(2):164-168. DOI: 10.1090/qam/10666
59. Marquardt D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics. 1963; 11(2):431-441. DOI: 10.1137/0111030
60. Transtrum M.K., Sethna J.P. Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization. ArXiv. 2012. DOI: 10.48550/arXiv.1201.5885
Review
For citations:
Budarin A.M., Ushakov O.Yu., Sabitov L.S., Mailyan L.R., Sosnovskikh S.S. Regression-based method for calculation of the punching shear capacity of the slab. Vestnik MGSU. 2025;20(6):867-887. (In Russ.) https://doi.org/10.22227/1997-0935.2025.6.867-887