Preview

Vestnik MGSU

Advanced search

Strength of centrally compressed concrete tube elements

https://doi.org/10.22227/1997-0935.2025.8.1154-1164

Abstract

Introduction. The increasingly large-scale use of compressed concrete tube elements in construction practice requires the development of methods for calculating their strength, taking into account the main features of their force resistance. The current design standards of a number of countries offer empirical formulas that ensure good accuracy in calculating axially compressed concrete pipe structures, but incorrectly take into account the distribution of forces between the concrete core and the steel pipe. This paper proposes a method that allows for a reliable assessment of the stress state of concrete and pipe.

Materials and methods. The strength of short centrally compressed CTE can be determined using the method of limiting forces. The accuracy of calculations according to the proposed method depends on the correct determination of the coefficients of the material. Currently, heavy concrete, which has a dense structure, is usually used for pipe-concrete columns. For such concretes, it is proposed to take the values that are obtained after processing the results of experiments conducted under volumetric compression with a constant lateral pressure. To establish these values, a statistical analysis of the results of 232 experiments with short centrally compressed CTE made of heavy concretes of medium and high strength was performed. For each experiment, coefficient values were selected corresponding to the best match between theoretical and experimental destructive loads.

Results. The methodology of the current standards does not allow to take into account the features of the concrete core in compressed CTE concretes of various types. In the proposed methodology, this issue is solved by appropriate selection of material coefficients. If there is a sufficient amount of experimentation with concrete CTE of a specific type, it is not difficult to find the values of the corresponding coefficients.

Conclusions. The developed method for calculating the strength of short centrally compressed solid waste takes into account the main features of the force resistance of a tube-concrete structure and allows us to determine the distribution of forces between the concrete core and the steel pipe.

About the Authors

A. L. Krishan
Nosov Magnitogorsk State Technical University; Scientific Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAASN)
Russian Federation

Anatoly L. Krishan — Doctor of Technical Sciences, Professor, Professor of the Department of Design and Construction of Buildings, Advisor to the Russian Academy of Architecture and Construction Sciences; chief researcher of the Laboratory for Monitoring Housing and Public Utilities and Radiation Safety in Construction

38 Lenin st., 455000, Magnitogorsk;
21 Lokomotivny proezd, Moscow, 127238

RSCI AuthorID: 535561, Scopus: 56200412900



V. I. Rimshin
Moscow State University of Civil Engineering (National Research University) (MGSU); Scientific Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAASN)
Russian Federation

Vladimir I. Rimshin — Doctor of Technical Sciences, Professor, Professor of the Department of Housing and Public Utilities, Advisor to the Russian Academy of Architecture and Construction Sciences; Head of the Laboratory for Monitoring Housing and Public Utilities and Radiation Safety in Construction;

26 Yaroslavskoe shosse, Moscow, 129337;
21 Lokomotivny proezd, Moscow, 127238

RSCI AuthorID: 420903, Scopus: 56258934600, ResearcherID: Р-4928-2015



M. A. Astafieva
Nosov Magnitogorsk State Technical University; Scientific Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAASN)
Russian Federation

Maria A. Astafieva — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Design and Construction of Buildings; Senior Researcher, Laboratory for Monitoring Housing and Public Utilities and Radiation Safety in Construction

38 Lenin st., 455000, Magnitogorsk;
21 Lokomotivny proezd, Moscow, 127238

RSCI AuthorID: 880101, Scopus: 57204739579, ResearcherID: ABA-4430-2021



M. A. Likhidko
Nosov Magnitogorsk State Technical University
Russian Federation

Mikhail A. Likhidko — postgraduate student of the Department of Design and Construction of Buildings

38 Lenin st., 455000, Magnitogorsk

RSCI AuthorID: 1038214



References

1. Ahmed M., Liang Q.Q., Patel V.I., Hadi M.N.S. Numerical analysis of axially loaded circular high strength concrete-filled double steel tubular short columns. Thin-Walled Structures. 2019; 138:105-116. DOI: 10.1016/j.tws.2019.02.001

2. Krishan A.L., Astafeva M.A., Chernyshova E.P. Numerical and Experimental Investigation of Axially Loaded Columns with Spiral Reinforcement. Materials Science Forum. 2023; 1087:163-168. DOI: 10.4028/p-7841oa

3. Mander J.B., Priestley M.J.N., Park R. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering. 1988; 114(8):1804-1826. DOI: 10.1061/(asce)0733-9445(1988)114:8(1804)

4. Hossain K.M.A., Chu K. Confinement of six different concretes in CFST columns having different shapes and slenderness. International Journal of Advanced Structural Engineering. 2019; 11(2):255-270. DOI: 10.1007/s40091-019-0228-2

5. Krishan A.L., Rimshin V.I., Astaf’eva M.A. Compressed concrete filled steel elements. Theory and practice. Moscow, ASV, 2020; 322. EDN ROLLKN. (rus.).

6. Patel V.I., Hassanein M.F., Thai H.T., Al Abadi H., Elchalakani M., Bai Y. Ultra-high strength circular short CFST columns: Axisymmetric analysis, behaviour and design. Engineering Structures. 2019; 179:268-283. DOI: 10.1016/j.engstruct.2018.10.081

7. Karpenko N.I. On one characteristic function of concrete strength under triaxial compression. Structural Mechanics and Analysis of Constructions. 1982; 2:33-36. (rus.).

8. Karpenko N.I., Karpenko S.N., Moiseenko G.A. Criterion of concrete strength under volumetric stress state and elevated temperatures. Academia. Architecture and Construction. 2024; 4:117-123. DOI: 10.22337/2077-9038-2024-4-117-123. EDN WGFKEZ. (rus.).

9. Karpenko N.I. General models of reinforced concrete mechanics. Moscow, 1996; 416. (rus.).

10. Lyudkovskiy I.G., Fonov V.M., Makaricheva N.V. Study of compressed concrete filled steel elements reinforced with high-strength longitudinal reinforcement. Concrete and Reinforced Concrete. 1980; 5:17-19. (rus.).

11. Xu L., Lu Q., Chi Y., Yang Y., Yu M., Yan Y. Axial compressive performance of UHPC filled steel tube stub columns containing steel-polypropylene hybrid fiber. Construction and Building Materials. 2019; 204:754-767. DOI: 10.1016/j.conbuildmat.2019.01.202

12. Rimshin V., Ketsko E. Justification of Strengthening of Reinforced Concrete Structures of an Industrial Building with Composite Materials. Lecture Notes in Civil Engineering. 2023; 129-138. DOI: 10.1007/978-3-031-36723-6_14

13. Zhu J.Y., Chan T.M. Experimental investigation on steel-tube-confined-concrete stub column with different cross-section shapes under uniaxial-compression. Journal of Constructional Steel Research. 2019; 162:105729. DOI: 10.1016/J. JCSR.2019.105729

14. Venkateshwaran A., Lai B., Liew J.Y.R. Design of steel fiber-reinforced high-strength concrete encased steel short columns and beams. ACI Structural Journal. 2021; 118(1):45-59. DOI: 10.14359/51728077

15. Lai B., Liew J.Y.R. Investigation on axial load-shorting behaviour of high strength concrete encased steel composite section. Engineering Structures. 2021; 227:111401. DOI: 10.1016/J.ENGSTRUCT.2020.111401

16. Gvozdev A.A. Tasks and prospects for the development of the theory of reinforced concrete. Construction Mechanics and Calculation of Structures. 1981; 6:14-17. (rus.).

17. Storozhenko L.I., Ermolenko D.A., Lapenko O.I. Pipe concrete : monograph. Poltava, ACMI, 2010; 305. (rus.).

18. Varlamov A.A., Gavrilov V.B., Sagadatov A.I. Comprehensive evaluation method of stressstrain state and durability of reinforced concrete structures. BST: Bulletin of Construction Equipment. 2017; 11(999):29-31. EDN ZRVWRR. (rus.).

19. Vasiliev A.I., Podvalny A.M. The complex influence of aggressive environmental factors on the corrosion of reinforcement in the protective layer. Concrete and Reinforced Concrete. 2010; 2:26-29. (rus.).

20. Karpenko N.I., Karpenko S.N., Yarmakovsky V.N., Yerofeev V.T. The modern methods for ensuring of the reinforced concrete structures durability. Academia. Architecture and Construction. 2015; 1:93-102. EDN TLLYWH. (rus.).


Review

For citations:


Krishan A.L., Rimshin V.I., Astafieva M.A., Likhidko M.A. Strength of centrally compressed concrete tube elements. Vestnik MGSU. 2025;20(8):1154-1164. (In Russ.) https://doi.org/10.22227/1997-0935.2025.8.1154-1164

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)