Fluoride-borate mixtures as a foaming intensifier for TPP slag wastes
https://doi.org/10.22227/1997-0935.2025.8.1199-1210
Abstract
Introduction. The possibility of intensifying the foaming process of thermal power plant (TPP) slag waste by introducing a mixture of fluxes consisting of sodium tetraborate (Na2B4O7) and sodium fluoride (NaF) was studied. The relevance of the study is due to the need for efficient recycling of industrial waste and the production of building materials with improved characteristics based on them. The scientific novelty of the work lies in the study of the combined effect of these fluxes on the foaming processes and the formation of the porous structure of the material. The purpose of the study is to optimize the composition of the fluxing mixture to reduce the melting point and improve the quality of porous silicate materials.
Materials and methods. The methods of X-ray phase analysis (XRD), infrared spectroscopy (FTIR), microscopic analysis and experimental determination of the density of specimens were used.
Results. A study of changes in the temperature modes of sintering and foaming with the combined introduction of Na2B4O7 and NaF mixtures was performed, as well as their effect on the structural and phase characteristics of the materials. It was shown that sodium tetraborate promotes uniform distribution of pores and formation of amorphous glass phase. Fluoride causes intensive melting of the structure at elevated temperatures, as well as recrystallization of the melt with formation of albite crystals. The optimal ratio of fluxes was revealed, providing minimum density, stable porous structure and formation of glass-crystalline framework, which contributes to increased strength.
Conclusions. The obtained results demonstrate the prospects of the method of recycling slag waste of thermal power plants for obtaining porous building materials using the “self-foaming” technology. Further research can be aimed at optimizing fluxing mixtures and studying the methods of activating ash and slag waste to improve the technological characteristics of the resulting products.
Keywords
About the Authors
B. M. GoltsmanRussian Federation
Boris M. Goltsman — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of General Chemistry and Technology of Silicates
132 Prosveshcheniya st., Novocherkassk, Rostov region, 346428
RSCI AuthorID: 711009, Scopus: 57144398600, ResearcherID: A-2765-2014
E. A. Yatsenko
Russian Federation
Elena A. Yatsenko — Doctor of Technical Sciences, Professor, Head of the Department of General Chemistry and Technology of Silicates
132 Prosveshcheniya st., Novocherkassk, Rostov region, 346428
RSCI AuthorID: 490400, Scopus: 7003335636, ResearcherID: A-3367-2014
A. A. Timofeeva
Russian Federation
Anna A. Timofeeva — postgraduate student of the Department of General Chemistry and Technology of Silicates
132 Prosveshcheniya st., Novocherkassk, Rostov region, 346428
Scopus: 58955788000
P. A. Skubovskaya
Russian Federation
Polina A. Skubovskaya — master’s student
132 Prosveshcheniya st., Novocherkassk, Rostov region, 346428
V. A. Smoliy
Russian Federation
Victoria A. Smoliy — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of General Chemistry and Technology of Silicates
132 Prosveshcheniya st., Novocherkassk, Rostov region, 346428
RSCI AuthorID: 588275, Scopus: 52063721000, ResearcherID: A-3442-2014
References
1. Nicolás M.F., Chávez M.M., Vlasova M., Pi Puig T. Low-temperature sintering of ceramic bricks from clay, waste glass and sand. Boletín de la Sociedad Española de Cerámica y Vidrio. 2024; 63(5):377-388. DOI: 10.1016/j.bsecv.2024.06.003
2. Chen G., Gao J., Liu C., Li S., Zhao Y., Wu H. et al. Effect of waste clay brick powder and slag on mechanical properties and durability of concrete. Powder Technology. 2025; 453:120623. DOI: 10.1016/j.powtec.2025.120623
3. Dadouch M., Belal T., Ghembaza M.S. Valorization of glass waste as partial substitution of sand in concrete — Investigation of the physical and mechanical properties for a sustainable construction. Construction and Building Materials. 2024; 411:134436. DOI: 10.1016/j.conbuildmat.2023.134436
4. Ma Z., Zhang Z., Liu X., Zhang Y., Wang C. Reusing waste glass fines to substitute cement and sand for recycled ultra-high performance strain-hardening cementitious composites (UHP-SHCC). Construction and Building Materials. 2024; 455:139186. DOI: 10.1016/j.conbuildmat.2024.139186
5. Ryschenko М.I., Fedorenko E.Yu., Lisac-huk G.V., Shabanova G.N. Technogenic materials and industrial waste as а source of raw stock for producing building materials. Ecology and Industry. 2013; 4(37):10-16. EDN IEUQQH. (rus.).
6. Zhukov D.Yu., Averina Yu.M., Vetrova M.A. Technological recycling of waste manufacturing different manganeous ore. Advances in Chemistry and Chemical Technology. 2018; 32(1):(197):64-67. EDN YVRACV. (rus.).
7. Korneeva E.V. Man-made sludge waste industrial in the production of construction materials. News of Higher Educational Institutions. Construction. 2024; 10(790):99-111. DOI: 10.32683/0536-1052-2024-790-10-99-111. EDN RBKRWN. (rus.).
8. Ashimova A.A., Bek A.A., Nurlybaev R.Ye., Nurpeisova M.B. Processing of ash and slag waste from thermal power plants with production of building materials. Young Scientist. 2024; S48-1(547-1):18-21. EDN TLMCIG.
9. Hossiney N., Das P., Mohan M.K., George J. In-plant production of bricks containing waste foundry sand — a study with Belgaum foundry industry. Case Studies in Construction Materials. 2018; 9:e00170. DOI: 10.1016/j.cscm.2018.e00170
10. Hafez A.I., Khedr M.M.A., Osman R.M., Sabry R., Mohammed M.S. A comparative investigation of the unit cost for the preparation of modified sand and clay bricks from rice husk waste. Journal of Building Engineering. 2020; 32:101765. DOI: 10.1016/j.jobe.2020.101765
11. Wang P., Li J., Hu Y., Cheng H. Solidification and stabilization of Pb–Zn mine tailing with municipal solid waste incineration fly ash and ground granulated blast-furnace slag for unfired brick fabrication. Environmental Pollution. 2023; 321:121135. DOI: 10.1016/j.envpol.2023.121135
12. Petersen R.R., König J., Iversen N., Østergaard M.B., Yue Y. The foaming mechanism of glass foams prepared from the mixture of Mn3O4, carbon and CRT panel glass. Ceramics International. 2021; 47(2):2839-2847. DOI: 10.1016/j.ceramint.2020.09.138
13. Smiljanić S., Hribar U., Spreitzer M., Kö-nig J. Influence of additives on the crystallization and thermal conductivity of container glass cullet for foamed glass preparation. Ceramics International. 2021; 47(23):32867-32873. DOI: 10.1016/j.ceramint.2021.08.183
14. Zhou H., Feng K., Liu Y., Cai L. Preparation and characterization of foamed glass-ceramics based on waste glass and slow-cooled high-titanium blast furnace slag using borax as a flux agent. Journal of Non-Crystalline Solids. 2022; 590:121703. DOI: 10.1016/j.jnoncrysol.2022.121703
15. Niu Y.H., Fan X.-Y., Ren D., Wang W., Li Y., Yang Z. et al. Effect of Na2CO3 content on thermal properties of foam-glass ceramics prepared from smelting slag. Materials Chemistry and Physics. 2020; 256:123610. DOI: 10.1016/j.matchemphys.2020.123610
16. Karamanov A., Hamzawy E.M.A., Karamanova E., Jordanov N.B., Darwish H. Sintered glass-ceramics and foams by metallurgical slag with addition of CaF2. Ceramics International. 2020; 46(5):6507-6516. DOI: 10.1016/j.ceramint.2019.11.132
17. Ryabov Y.V., Delitsyn L.M., Ezhova N.N., Sudareva S.V. Methods for beneficiation of ash and slag waste from coal-fired thermal power plants and ways for their commercial use : a review. Thermal Engineering. 2019; 3:3-24. DOI: 10.1134/S0040363619030056. EDN YVCLLV. (rus.).
18. Hu S., Li D., Li Y., Guo Q., Tian D., Zhang L. et al. Preparation of Foamed Ceramics from Graphite Tailings Using a Self-Foaming Method. Minerals. 2023; 13(521). DOI: 10.3390/min13040521
19. Erofeev V.T., Rodin A.I., Bochkin V.S., Ermakov A.A. The formation mechanism of the porous structure of glass ceramics from siliceous rock. Magazine of Civil Engineering. 2020; 8(100). DOI: 10.18720/MCE.100.6. EDN GPPAGD.
20. Qi Y., Yue Q., Han S., Yue M., Gao B., Yu H. et al. Preparation and mechanism of ultra-lightweight ceramics produced from sewage sludge. Journal of Hazardous Materials. 2010; 176(1-3):76-84. DOI: 10.1016/j.jhazmat.2009.11.001
21. Gol’tsman B. M., Smoliy V.A., Yatsenko V.S., Vilbitskaya E.A. Synthesis of porous materials based on tpp ash-slag waste using “self-foaming” technology. Glass and Ceramics. 2025; 98(1):(1165):50-57. DOI: 10.14489/glc.2025.01.pp.050-057. EDN EKTPTZ. (rus.).
22. Senina M.O., Lemeshev D.O., Protasov A.S., Zhukov D.Yu. Understanding the effect of lithium fluoride additive on the properties of pressureless sintered magnesium aluminate spinel ceramics. Tsvetnye Metally. 2022; 9:18-22. DOI: 10.17580/tsm.2022.09.02. EDN FGPDQW. (rus.).
23. Wang Z., Huang S., Yu Y., Wen G., Tang P., Hou Z. Comprehensive understanding of the microstructure and volatilization mechanism of fluorine in silicate melt. Chemical Engineering Science. 2021; 243:116773. DOI: 10.1016/j.ces.2021.116773
24. Mohan S.K., Sarkar R. A comparative study on the effect of different additives on the formation and densification of magnesium aluminate spinel. Ceramics International. 2016; 42(12):13932-13943. DOI: 10.1016/j.ceramint.2016.05.206
25. Goltsman B.M., Yatsenko E.A., Yatsenko L.A., Irkha V.A. Synthesis of porous silicate materials using sodium fluride as fluxing agent. Tsvetnye Metally. 2021; 6:44-49. DOI: 10.17580/tsm.2021.06.06. EDN CUCCFS. (rus.).
26. Manjunatha C., Nagabhushana B.M., Sunit-ha D.V., Nagabhushana H., Sharma S.C., Venkatesh G.B. et al. Effect of NaF flux on microstructure and thermoluminescence properties of Sm3+ doped CdSiO3 nanophosphor. Journal of Luminescence. 2013; 134:432-440. DOI: 10.1016/j.jlumin.2012.08.006
27. Ge Z., Xiong B., Zhang X., Yuan X. Effect of photo-thermo-induced nucleation on crystallization properties of SiO2–Al2O3–ZnO–Na2O photo-thermo-refractive glass. Optical Materials. 2022; 132(4):112878. DOI: 10.1016/j.optmat.2022.112878
28. Kolobkova E., Alkhlef A., Dinh B., Yasukevich A., Dernovich O., Kuleshov N. et al. Spectral properties of Nd3+ ions in the new fluoride glasses with small additives of the phosphates. Journal of Luminescence. 2019; 206:523-529. DOI: 10.1016/j.jlumin.2018.10.082
29. Kaz’mina O. V., Vereshchagin V.I. Methodological principles of synthesis of foam glass-crystalline materials using low-temperature technology. Construction Materials. 2014; 8:41-45. EDN SJVXNP. (rus.).
30. Kaz’mina O.V., Vereshchagin V.I. Physicochemical modeling of composition of foam glass-crystal materials. Glass Physics and Chemistry. 2015; 41(1):166-172. EDN TKAZFZ. (rus.).
31. Mohassab Y., Sohn H.Y. Analysis of slag chemistry by FTIR-RAS and Raman spectroscopy: Effect of water vapor content in H2O/CO/CO2 mixtures relevant to a novel green ironmaking technology. Steel Research International. 2015; 86(7):740-752. DOI: 10.1002/srin.201400186
32. Finocchiaro C., Barone G., Mazzoleni P., Leonelli C., Gharzouni A., Rossignol S. FT-IR study of early stages of alkali activated materials based on pyroclastic deposits (mt. Etna, Sicily, Italy) using two different alkaline solutions. Construction and Building Materials. 2020; 262:120095. DOI: 10.1016/j.conbuildmat.2020.120095
Review
For citations:
Goltsman B.M., Yatsenko E.A., Timofeeva A.A., Skubovskaya P.A., Smoliy V.A. Fluoride-borate mixtures as a foaming intensifier for TPP slag wastes. Vestnik MGSU. 2025;20(8):1199-1210. (In Russ.) https://doi.org/10.22227/1997-0935.2025.8.1199-1210