Preview

Vestnik MGSU

Advanced search

Control of parameters of the calculation model of a spatial structure based on the results of full-scale tests

https://doi.org/10.22227/1997-0935.2025.10.1534-1541

Abstract

Introduction. In numerical modelling of mechanical systems, the proximity of the computational model to the actual behaviour of the object is largely determined by the adequacy of the specified boundary conditions. In practice, the support conditions of structural elements often differ from the idealized assumptions adopted in computational models, which leads to discrepancies between calculated and experimental data.

Materials and methods. This study considers an approach to optimizing the boundary conditions of a finite element model using the evolutionary algorithm CMA-ES [1]. The object of investigation was a spatial frame structure, for which experimental studies of dynamic characteristics — natural frequencies and free vibrations — were conducted. The comparison of calculated and experimental frequencies and vibration modes was performed using the modal assurance criterion (MAC) and the relative error between the calculated eigenfrequencies of the model and their experimentally determined values. Based on these metrics, the objective function of the optimization problem was formulated.

Results. The optimization made it possible to determine the stiffness coefficients of the support connections in the lower chord of the structure in six degrees of freedom. The results showed that the application of the evolutionary approach significantly reduced discrepancies between model and experimental data, thereby improving the accuracy of the computational model.

Conclusions. The accuracy of finite element modelling of structures can be improved by aligning the model and experimental dynamic characteristics through the use of evolutionary algorithms.

About the Authors

O. A. Ivanov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Oleg A. Ivanov — postgraduate student of the Department of Computer Science and Applied Mathematics

26 Yaroslavskoe shosse, Moscow, 129337



V. N. Sidorov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Vladimir N. Sidorov — Doctor of Technical Sciences, Professor, Head of the Department of Computer Science and Applied Mathematics, Academician of RAASN

26 Yaroslavskoe shosse, Moscow, 129337



P. I. Novikov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Pavel I. Novikov — Candidate of Technical Sciences, senior lecturer of the Department of Computer Science and Applied Mathematics

26 Yaroslavskoe shosse, Moscow, 129337



References

1. Nomura M., Shibata M. Cmaes: A Simple yet Practical Python Library for CMA-ES. ArXiv:2402.01373. 2024. DOI: 10.48550/arXiv.2402.01373

2. Park Y.S., Kim S., Kim N., Lee J.J. Finite element model updating considering boundary conditions using neural networks. Engineering Structures. 2017; 150:511-519. DOI: 10.1016/j.engstruct.2017.07.032

3. Sidorov V.N. Structure numerical model updating algorithm on the results of monitoring. International Journal for Computational Civil and Structural Engineering. 2013; 9(2):118-123. EDN RDQZGR. (rus.).

4. Zhou S., Song W. Environmental-effects-embedded model updating method considering environmental impacts. Structural Control and Health Monitoring. 2017; 25(3):e2116. DOI: 10.1002/stc.2116

5. Allemang R. The Modal Assurance Criterion (MAC): Twenty Years of Use and Abuse. Journal of Sound and Vibration. 2003; 37(8).

6. Hansen N. The CMA Evolution Strategy : а Tutorial. ArXiv:1604.00772. 2016. DOI: 10.48550/arXiv.1604.00772

7. Alkayem N.F., Cao M., Zhang Y., Bayat M., Su Z. Structural damage detection using finite element model updating with evolutionary algorithms : a survey. Neural Computing and Applications. 2018; 30(2):389-411. DOI: 10.1007/s00521-017-3284-1

8. Ghahremani B., Bitaraf M., Rahami H. A fast-convergent approach for damage assessment using CMA-ES optimization algorithm and modal parameters. Journal of Civil Structural Health Monitoring. 2020; 10(3):497-511. DOI: 10.1007/s13349-020-00397-1

9. Chen B., Starman B., Halilovič M., Berglund L.A., Coppieters S. Finite Element Model Updating for Material Model Calibration : а Review and Guide to Practice. Archives of Computational Methods in Engineering. 2024; 32(4):2035-2112. 10.1007/s11831-024-10200-9

10. Chen Q., Zhou S., Xiao Y., Chen L., Zhou Y., Zhang L. Modal test and finite element updating of sprayer boom truss. Scientific Reports. 2024; 14(1). DOI: 10.1038/s41598-024-73640-0

11. Li D., Zhou J., He X. A unified approach for time-domain and frequency-domain finite element model updating. Mechanical Systems and Signal Processing. 2025; 227:112361. DOI: 10.1016/j.ymssp.2025.112361

12. Chen X., Zhang D., Beer M., Aadil M. Improved efficiency and accuracy in Bayesian structural model updating via DREAMCMAZS sampling and Kriging surrogates. Structures. 2025; 80:109856. DOI: 10.1016/j.istruc.2025.109856

13. Liu H., Qin L., Zhou Z. Knowledge-Based Perturbation LaF-CMA-ES for Multimodal Optimization. Applied Sciences. 2024; 14(19):9133. DOI: 10.3390/app14199133

14. Korgin A.V., Ermakov V.A. Automated update of the FEM-model of the facilities in the monitoring. Mechanization of Construction. 2011; 7(805):16-17. EDN NXBFFR. (rus.).

15. Belostotsky A.M., Kalichava D.K., Nagibovich A.I., Petryashev N.O., Petryashev S.O. Adaptive finite element models as the base of dynamic monitoring of tall buildings. Part 2. Verification procedures for experimental models. International Journal for Computational Civil and Structural Engineering. 2012; 8(4):28-42. EDN PZEXJN. (rus.).

16. Kalichava D.K. Adaptive dynamic finite element models for monitoring load-bearing structures of high-rise buildings : dissertation … candidate of technical sciences. Moscow, 2012; 149. EDN SUOQDX. (rus.).

17. Novikov P.I. Numerical analysis technique for stiffness parameters identification of spatial structures by minimizing the difference between the calculated (finite element) and natural dynamic characteristics. Intelligent Systems in Production. 2020; 18(3):64-71. DOI: 10.22213/2410-9304-2020-3-64-71. EDN LFCLNA. (rus.).

18. Friswell M.I., Mottershead J.E. Finite Element Model Updating in Structural Dynamics. Solid Mechanics and its Applications. 1995. DOI: 10.1007/978-94-015-8508-8

19. Alkayem N.F., Cao M., Zhang Y., Bayat M., Su Z. Structural damage detection using finite element model updating with evolutionary algorithms : a survey. Neural Computing and Applications. 2018; 30(2):389-411. DOI: 10.1007/s00521-017-3284-1


Review

For citations:


Ivanov O.A., Sidorov V.N., Novikov P.I. Control of parameters of the calculation model of a spatial structure based on the results of full-scale tests. Vestnik MGSU. 2025;20(10):1534-1541. (In Russ.) https://doi.org/10.22227/1997-0935.2025.10.1534-1541

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)