Preview

Vestnik MGSU

Advanced search

Bending-torsional and flat forms of instability of an I-beam with variable wall height

https://doi.org/10.22227/1997-0935.2025.12.1839-1852

Abstract

Introduction. The aim of the study is to investigate the problem of bending-torsion and flat-form loss of stability of a thin-walled open-section element. A refinement of V.Z. Vlasov’s technical theory for thin-walled rods is presented. The refined differential equations obtained describe the stability conditions of an I-beam with variable wall height. Closed solutions based on refined differential equations are presented using the Bubnov–Galerkin analytical method. The paper provides comparative graphs that allow the differences between analytical solutions and finite element analysis to be assessed.

Materials and methods. The technical theory of V.Z. Vlasov and the Bubnov–Galerkin method were used.

Results. Based on the clarifications made, a closed-form solution was obtained for the problem of elastic buckling of a rod with a linearly varying wall height. An analytical method was proposed for calculating the bending-torsional and flat forms of buckling of a thin-walled open-section element.

Conclusions. The theoretical work presented demonstrates that the solution to the problem of the plane shape and bending-torsional instability of a beam-column with a linearly varying wall height of an open section can be achieved by refining the differential equations and presented in a closed form similar to that for beams-columns of constant section, but with additional corrections in the form of formula coefficients.

About the Author

A. O. Ilyushenkov
Territorial Design Institute “Khabarovskpromproekt”
Russian Federation

Alexander O. Ilyushenkov — civil and industrial engineer

2 Ussuriysky Boulevard, Khabarovsk, 680000



References

1. Cywinski Z. Skrecanie Pretow Cienkosciennych Typu Dwuteownika o Dwukierunkowej Zmiennosci Przekroju. Engineering Transactions. 1968; 16(1):21-32.

2. Cywinski Z. Skrecanie Pretow Cienkosciennych Typu Dwuteownika o Zmiennej Wysokosci Srodnika. Engineering Transactions. 1968; 2(13):269-280.

3. Cywinski Z. Statyka I Dynamika Skrecanego Cienkosciennego Dwuteownika o Zmiennym, Bisymetrycznym Przekroju Poprzecznym. Engineering Transactions. 1969; 17(2):185-217.

4. Marques L., Da Silva L.S., Rebelo C. Rayleigh-Ritz procedure for determination of the critical load of tapered columns. Steel and Composite Structures. 2014; 16(1):45-58. DOI: 10.12989/scs.2014.16.1.045

5. Benyamina A.B., Meftah S.A., Mohri F., Daya E.M. Analytical solutions attempt for lateral torsional buckling of doubly symmetric web-tapered I-Beams. Engineering structures. 2013; 56:1207-1219. DOI: 10.1016/j.engstruct.2013.06.036

6. Andrade A., Camotim D., Dinis P.B. Lateraltor-sional buckling of singly symmetric web-tapered thin-walled I-beams: 1D model vs. shell FEA. Computers & Structures. 2007; 85(17-18):1343-1359. DOI: 10.1016/j.compstruc.2006.08.079

7. Andrade A., Camotim D. Lateral-torsional bucking of singly symmetric tapered beams: theory and applications. Journal of Engineering Mechanics. 2005; 131(6):586-597. DOI: 10.1061/(ASCE)0733-9399(2005)131:6(586)

8. Kim Y.D., White D.W. Practical buckling solutions for web-tapered members. Proceedings of the annual stability conference of the structural stability research council: reports on current research activities. 2007; 259-278.

9. Vlasov V.Z. Thin-walled elastic rods. Moscow, Fizmatgiz, 1959; 574. (rus.).

10. Vlasov V.Z. Thin-walled elastic beams. Washington D.C., National Science Foundation, 1960; 493.

11. Timoshenko S.P., Gere J.M. Theory of elastic stability. 2nd Ed., New York, McGraw-Hill, 1961; 560.

12. Timoshenko S.P. Stability of elastic systems. Moscow, Gostekhizdat, 1955; 567. (rus.).

13. Boley B.A. On the accuracy of the Bernoulli-Euler theory for beams of variable section. Journal of Applied Mechanics. 1963; 30(3):373-378. DOI: 10.1115/1.3636564

14. Kaehler R.C., White D.W., Kim Y.D. Frame design using nonprismatic members. 1st Ed. Design Guide 25. Chicago, AISC, 2011; 214.

15. Nelson P., Murray T.M. Development of simplified design methodology for tapered Beams. Rigid Frame Studies Report, Star Manufacturing Co, Oklahoma City. 1979; 136.

16. Bai R., Liu S.W., Liu Y.P., Chan S.L. Direct analysis of tapered-I-section columns by one-element-per-member models with the appropriate geometric-imperfections. Engineering Structures. 2019; 183:907-921. DOI: 10.1016/j.engstruct.2019.01.021

17. Chen W.F., Liu Y.P., Du Z.L., Bai R., Chan S.L. A consistent tapered beam-column element allowing for different variations and initial imperfections. 2021; 33:3443-3460. DOI: 10.1016/j.istruc.2021.06.069

18. Bradford M.A. Lateral stability of tapered beam-columns with elastic restrains. UNICIV Report No. R-243. University of New South Wales, Australia, 1987; 26.

19. Bradford M.A. Stability of tapered I-beams. UNICIV Report No. R-240. University of New South Wales, Australia, 1987; 22.

20. Cuk P.E., Trahair N.S., Bradford M.A. Inelastic lateral buckling of steel beam-columns. Structural Engineering Report No. 131. The University of Alberta, Canada, 1985; 16.


Review

For citations:


Ilyushenkov A.O. Bending-torsional and flat forms of instability of an I-beam with variable wall height. Vestnik MGSU. 2025;20(12):1839-1852. (In Russ.) https://doi.org/10.22227/1997-0935.2025.12.1839-1852

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)