Preview

Vestnik MGSU

Advanced search

Reinforcement of drill-injection piles

https://doi.org/10.22227/1997-0935.2025.12.1907-1919

Abstract

Introduction. The paper presents the possibility of reducing the reinforcement length of flexible drill-injection piles with diameters up to 0.3 m without compromising their material bearing capacity, based on an analysis of bending moment distribution along the pile length. The relevance of the study stems from the need to find technical solutions that simplify and reduce the cost of foundation reinforcement while maintaining reliability and durability. The main objective is to provide a computational justification for the minimum required reinforcement length of drill-injection piles, considering their actual behavior in soil mass.

Materials and methods. To achieve this goal, the distribution of bending moments was analyzed for piles with diameters of 0.2, 0.25, and 0.3 m in two types of soil conditions. The assessment was performed using known analytical solutions and numerical modelling in Midas FEA NX software. The sufficiency of reinforcement was evaluated based on the ratio between actual loads and the ultimate tensile strength of concrete, allowing determination of necessary reinforcement zones along the pile length.

Results. The analysis of bending moment distribution in flexible piles showed that maximum stresses occur only in the upper section (up to 3–4 m depth), with rapid attenuation of bending moments below this level. For silty-clay soils, the sufficient reinforcement depth for flexible piles up to 0.3 m diameter was established as 15–16 pile diameters.

Conclusions. The study demonstrates the fundamental possibility of reducing reinforcement cage length in flexible drill-injection piles (up to 0.3 m diameter) without compromising bearing capacity. Practical recommendations for reinforcement depth depending on pile diameter and soil characteristics were developed. The results facilitate the installation of small-diameter drill-injection piles, particularly in confined working conditions.

About the Authors

I. S. Salnyi
Industrial University of Tyumen (IUT)
Russian Federation

Ivan S. Salnyi — Candidate of Technical Sciences, Associate Professor of the Department of Construction Production and Geotechnics

38 Volodarsky st., Tyumen, 625000

Scopus: 57210175037, ResearchID: JWO-3959-2024



M. A. Stepanov
Industrial University of Tyumen (IUT)
Russian Federation

Maksim A. Stepanov — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Construction Production and Geotechnics

38 Volodarsky st., Tyumen, 625000

Scopus: 57190858151, ResearchID: ABI-3269-2020



A. A. Tarasenko
Industrial University of Tyumen (IUT)
Russian Federation

Aleksandr A. Tarasenko — Doctor of Technical Sciences, Professor, Professor of the Department of Transport of Hydrocarbon Resources

38 Volodarsky st., Tyumen, 625000

Scopus: 56490196600, ResearchID: Е-5305-2017



References

1. Salnyi I.S., Pronozin Y.A., Naumkina J.V., Karaulov A.M. Experience in application of drilled injection piles for building and structure strengthening. Journal of Physics: Conference Series. 2021; 1928:012010. DOI: 10.1088/1742-6596/1928/1/012010. EDN HBLHVM.

2. Salnyi I., Stepanov M., Karaulov A. Experience in strengthening foundations and foundations on technogenic soils. E3S Web of Conferences. 2022; 363:02004. DOI: 10.1051/e3sconf/202236302004. EDN ZMUZAF.

3. Lizzi F. The Pali Radice (Root Piles). Symposium on Soil and Rock Improvement Techniques including Geotextiles Reinforced Earth and Modern Piling Methods. 1982; 1-21.

4. Malinin A.G., Malinin D.A. Procedure for installation of “Atlant” anchor piles. Soil Mechanics and Foundation Engineering. 2010; 1:17-20. EDN SKAOCF. (rus.).

5. Polishchuk A.I., Petukhov A.A., Semenov I.V. Strengthening of foundations with injection piles during building reconstruction. Krasnodar, KubGAU, 2022; 240. (rus.).

6. Gupta R.K., Chawla S. Performance evaluation of micropiles as a ground improvement technique for existing railway tracks: Finite-element and genetic programming approach. International Journal of Geomechanics. 2022; 22(3). DOI: 10.1061/(ASCE)GM.1943-5622.0002270

7. Mangushev R.A., Gotman A.L., Znamensky V.V., Ponomarev A.B. Piles and pile foundations. Structures, design and technologies. Moscow, Publishing House of the Association of Construction Universities, 2021; 311. (rus.).

8. Patent RU No. 2817842C1. Method for constructing a bored pile / Pronozin Ya.A., Salny I.S., Volosyuk D.V. Publ. 04.22.2024. Bulletin No. 12.

9. Salny I.S. Interaction of bored piles with the soil base : dis. ... cand. of technical sciences. Tyumen, 2023; 161. EDN VGZPVY. (rus.).

10. Charlanova D.S., Terekhova O.P. Reinforcement of the foundations of reconstructed buildings with drilling-injection piles. Science Bulletin. 2022; 3(1):(46):161-164. EDN PPTGVZ. (rus.).

11. Dos Santos Filho J.M.S.M., Da Silva Oliveira Morais T., De Hollanda Cavalcanti Tsuha C. Helical piles with cement injection in medium dense sand. Inter-national Journal of Geotechnical Engineering. 2023; 17(4):352-362. DOI: 10.1080/19386362.2023.2250200

12. Kim J., Kim U., Choi H., Min B., Park S. Deve-lopment of expanded steel pipe pile to enhance bearing capacity. Sustainability. 2022; 14(5). DOI: 10.3390/su14053077. EDN LRZIWX.

13. Guo J., Dai G., Wang Y. Method for Calculating Vertical Compression Bearing Capacity of the Static Drill Rooted Nodular Pile. Applied Sciences. 2022; 12(10):5101. DOI: 10.3390/app12105101

14. Elaziz A.Y.A., Naggar M.H.E. Geotechnical capacity of hollow-bar micropiles in cohesive soils. Canadian Geotechnical Journal. 2014; 51(10):1123-1138. DOI: 10.1139/cgj-2013-0408

15. Nurjanah A. Analysis of Bearing Capacity of Pile Foundations Using Analytical Method and Finite Element Method. Eduvest — Journal of Universal Studies. 2024; 4(4). DOI: 10.59188/eduvest.v4i4.1190

16. Telford W., Kokan M., Aschenbroich H. Pile load tests of titan injection bored micropiles at an industrial plant in North Vancouver. Proc. 9th International Workshop on Micropiles. 2009; 138-145.

17. Zhang X., Ding L., Xiao C., Song Y. Characterizing Structural Bearing Capacity and Deformation Behaviors of Micropiles under Multi-Stage Static Loading. KSCE Journal of Civil Engineering. 2023; 27(3):992-1009. DOI: 10.1007/s12205-023-0403-7. EDN NVTGBC.

18. Hong S., Kim Q., Kim I., Abbas Q., Lee J. Experimental and numerical studies on load-carrying capacities of encased micropiles with perforated configuration under axial and lateral loadings. International Journal of Geomechanics. 2021; 21(6). DOI: 10.1061/(ASCE)GM.1943-5622.0002019. EDN EZBTDJ.

19. Hong S., Kim G., Kim I., Lee J., Lee J. Characterizing optimum casing configuration for laterally loaded micropiles with inclined condition. KSCE Journal of Civil Engineering. 2022; 26(9):3776-3788. DOI: 10.1007/s12205-022-1516-0. EDN HYTZSM.

20. Ulitsky V.M., Shashkin A.G., Shashkin K.G. Guide to geotechnics. Guide to foundations and underground structures. St. Petersburg, PI Georeconstruction, 2012; 288. EDN SYLFNN. (rus.).

21. Konyushkov V.V. Bearing capacity of bored piles for vertical and horizontal loads taking into account the technology of their manufacture : diss. … cand. of engineering sciences. St. Petersburg, 2007; 217. EDN NOYFNF. (rus.).

22. Melnikov R.V., Pronozin Y.A. Verticality of boreholes. Construction and Geotechnics. 2021; 12(3):94-104. DOI: 10.15593/2224-9826/2021.3.10. EDN HHSKZJ. (rus.).

23. Ukhov S.B., Semenov V.V., Znamensky V.V., Ter-Martirosyan Z.G., Chernyshev S.N. Soil mechanics, foundations and foundations : textbook. Moscow, Vysshaya shkola, 2007; 556. EDN QNMXGT. (rus.).

24. Silin K.S., Glotov N.M., Zavriev K.S. Design of deep foundations. Moscow, Transport, 1981; 252. (rus.).

25. Simvulidi I.A. Calculation of engineering structures on an elastic foundation: a textbook for construction universities. 4th ed. Moscow, Vysshaya shkola, 1978; 480. (rus.).

26. Chernyavsky D.A. Development of the design and method for calculating the bearing capacity of bored conical piles in clayey soils : diss. ... cand. tech. sciences. St. Petersburg, 2020; 149. EDN CVZXEY. (rus.).


Review

For citations:


Salnyi I.S., Stepanov M.A., Tarasenko A.A. Reinforcement of drill-injection piles. Vestnik MGSU. 2025;20(12):1907-1919. (In Russ.) https://doi.org/10.22227/1997-0935.2025.12.1907-1919

Views: 22

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)