Preview

Vestnik MGSU

Advanced search

The influence of polypropylene fibre on the physical and mechanical properties of glass-dolomite sheets

https://doi.org/10.22227/1997-0935.2025.12.1920-1934

Abstract

Introduction. One of the promising areas for the development of construction materials is to use carbonated materials with a low magnesium oxide content as raw materials for the production of binders and the manufacture of materials based on them. The relevance of the application of fibreglass reinforcement is related to the need to significantly increase the physical and mechanical properties of fibreglass dolomite sheets from magnesia binder. The introduction of polypropylene fibres will improve bending performance of composite material, increase in-service crack resistance and reduce shrinkage during hardening. The aim of the study was to select the optimal fibre concentration and determine its influence on the physical and mechanical properties of glass fibre dolomite sheets.

Materials and methods. The materials studied are glass dolomite sheets obtained by mixing burned dolomite, water solution of magnesium chloride, additives and fibrous reinforcement. The mechanical activation of the caustic dolomite was produced in a vortex layer device. The structure of the composite and the surface morphology were investigated by electron microscopic analysis. The influence of fibre parameters on the strength of the reinforced sheet was evaluated by a designed calculation model in the Ansys software complex.

Results. The results of the dependence of bending strength and specimen density on by concentration, length of polypropylene fibres are presented. The limit values of the stresses when bending, vertical movements of the unreinforced sheet, reinforced by fibres on the non-activated and mechanical activated binder are determined. plasticity index for comparing the plastic deformations of the material was introduced and the value of fibre adhesion to the matrix was calculated.

Conclusions. It was established that the mechanical treatment of magnesium binder in a vortex layer device increases bending and residual strength, increases impact force, and the introduction of fibre prevents brittle fracture of the specimen.

About the Authors

Yu. V. Bikaeva
Kazan State University of Architecture and Engineering (KSUAE)
Russian Federation

Yuliya V. Bikaeva — postgraduate student

1 Zelenaya st., Kazan, 420043



R. A. Ibragimov
Kazan State University of Architecture and Engineering (KSUAE)
Russian Federation

Ruslan A. Ibragimov — Candidate of Technical Sciences, Associate Professor, Head of the Department of Construction Production Technology

1 Zelenaya st., Kazan, 420043



L. R. Gimranov
Kazan State University of Architecture and Engineering (KSUAE)
Russian Federation

Linur R. Gimranov — Candidate of Technical Sciences, Associate Professor

1 Zelenaya st., Kazan, 420043



E. V. Korolev
Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU)
Russian Federation

Evgenii V. Korolev — Doctor of Technical Sciences, Professor, Vice-Rector for Research, Head of the Department of Building Materials Technologies and Metrology

4, 2nd Krasnoarmeiskaya st., 190005, St. Petersburg



References

1. Haque M.A., Dai J.G., Zhao X.L. Magnesium cements and their carbonation curing : а state-of-the-art review. Low-carbon Materials and Green Construction. 2024; 2(1):2. DOI: 10.1007/s44242-023-00033-3. EDN MTEOPG.

2. Dushevina A.M. Study of the strength of caustic dolomite-based materials. Mechanics and Technology. 2024; 2(84):228-237. DOI: 10.55956/GTER6622. EDN HXMMPH.

3. Averina G.F., Koshelev V.A., Kramar L.Ya. The effect of additives regulating the setting time on the resistance of chloromagnesial composites to cracking during prolonged water saturation. Construction Materials. 2024; 1-2:110-114. DOI: 10.31659/0585-430X-2024-821-1-2-110-114. EDN CMBXML. (rus.).

4. Zhukov S.V., Chemekov A.M., Cherevko S.A., Chistjakova E.A. Magnesia cement based on technogenic raw materials. Bulletin of Civil Engineers. 2022; 3(92):95-103. DOI: 10.23968/1999-5571-2022-19-3-95-103. EDN JAEVQZ. (rus.).

5. Yu W., Yu H., Ma H., Shi T., Wen J., Ma H. Durability of Magnesium Oxychloride Cement in Application: Phase Composition Transition and Microstructure Characteristics. Journal of Materials in Civil Engineering. 2024; 36(1). DOI: 10.1061/jmcee7.mteng-16643. EDN CBRMDH.

6. An L., Chang Ch., Yan F., Peng J. Study on the Deterioration Mechanism of Magnesium Oxychloride Cement under an Alkaline Environment. Materials. 2023; 16(17):5924. DOI: 10.3390/ma16175924. EDN DQKYWP.

7. Wang L., Tang Sh. High-performance fiber-reinforced composites: latest advances and prospects. Buildings. 2023; 13(4):1094. DOI: 10.3390/buildings13041094. EDN QQZLCU.

8. Aiken T.A., Kwasny Ja., Russell M., Mcpolin D., Bagnall L. Effect of partial MgO replacement on the properties of magnesium oxychloride cement. Cement and Concrete Composites. 2022; 134:104791. DOI: 10.1016/j.cemconcomp.2022.104791. EDN WNNBCP.

9. Attari N., Amziane S., Chemrouk M. Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets. Construction and Building Materials. 2012; 37:746-757. DOI: 10.1016/j.conbuildmat.2012.07.052

10. Soumya S. Strengthening of RC continuous beam using FRP sheet. Department of Civil Engineering, National Institute of Technology Rourkela, Odisha, India, 2012.

11. Guo P., Moghaddas S.A., Liu Y., Meng W., Li V.C., Bao Y. Applications of machine learning methods for design and characterization of high-performance fiber-reinforced cementitious composite (HPFRCC) : a review. Journal of Sustainable Cement-Based Materials. 2025; 14(9):1726-1749. DOI: 10.1080/21650373.2025.2462183

12. Nguyễn H.H., Nguyễn Ph.H., Lương Q.Hi. U., Meng W., Lee B.Ye. Mechanical and autogenous healing properties of high-strength and ultra-ductility engineered geopolymer composites reinforced by PE-PVA hybrid fibers. Cement and Concrete Composites. 2023; 142:105155. DOI: 10.1016/j.cemconcomp.2023.105155. EDN LTFSVQ.

13. He Zh., Han X., Zhang Yu., Zhang Z., Shi J., Gencel O. Development of a new magnesium oxychloride cement board by recycling of waste wood, rice husk ash and flue gas desulfurization gypsum. Journal of Building Engineering. 2022; 61:105206. DOI: 10.1016/j.jobe.2022.105206. EDN JHXPFV.

14. Yufei H., Xiangming K. Biomimetic organic-inorganic hybrid magnesium oxychloride cement as green adhesive for wood industry. 16th International Conference on Durability of Building Materials and Components. 2023. DOI: 10.23967/c.dbmc.2023.100

15. Liu Ya., Cao Yu., Wang L., Chen Zh.S., Qin Ya. Prediction of the durability of high-performance concrete using an integrated RF-LSSVM model. Construction and Building Materials. 2022; 356:129232. DOI: 10.1016/j.conbuildmat.2022.129232. EDN YNYRWQ.

16. He P., Hossain U., Poon C.S., Tsang D.C.W. Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood. Journal of Cleaner Production. 2019; 207:391-399. DOI: 10.1016/j.jclepro.2018.10.015

17. Alghamdi H., Shoukry H., Abdel-Gawwad H.A., Hossain Md.U., Abadel A.A., Eltawil Kh.A. et al. Development of limestone calcined clay cement-based lightweight bricks incorporating waste rockwool: A step into leading the way in low-carbon bricks. Buildings. 2024; 14(12):3937. DOI: 10.3390/buildings14123937. EDN WDQADB.

18. Wei L., Wang Y., Yu J., Xiao J., Xu S. Feasibility study of strain hardening magnesium oxychloride cement-based composites. Construction and Building Materials. 2018; 165:750-760. DOI: 10.1016/j.conbuildmat.2018.01.041

19. Wang Y., Wei L., Yu J., Yu K. Mechanical properties of high ductile magnesium oxychloride cement-based composites after water soaking. Cement and Concrete Composites. 2019; 97:248-258. DOI: 10.1016/j.cemconcomp.2018.12.028

20. Yu K., Guo Y., Zhang Y.X., Soe Kh. Magnesium oxychloride cement-based strain-hardening cementitious composite: Mechanical property and water resistance. Construction and Building Materials. 2020; 261:119970. DOI: 10.1016/j.conbuildmat.2020.119970. EDN AFVKKG.

21. Li Ke., Zhang A., Wang Q., Wu B., Liu R., Wang Yu. et al. Study on the mechanical characteristics of magnesium oxychloride cement composites reinforced with polyformaldehyde fibers. Construction and Building Materials. 2023; 409:134048. DOI: 10.1016/j.conbuildmat.2023.134048. EDN AMTKHU.

22. Ahmad F., Rawat S., Yang R.Ch., Zhang L., Guo Y., Fanna D.J. et al. Effect of hybrid fibres on mechanical behaviour of magnesium oxychloride cement-based composites. Construction and Building Materials. 2024; 424:135937. DOI: 10.1016/j.conbuildmat.2024.135937. EDN YAODUE.

23. Rawat S., Saliba P., Estephan P.Ch., Ahmad F., Zhang Y. Mechanical performance of Hybrid Fibre Reinforced Magnesium Oxychloride Cement-based composites at ambient and elevated temperature. Buildings. 2024; 14(1):270. DOI: 10.3390/buildings14010270. EDN IMYPBR.

24. Wang L., He T., Liu Z., Su J., Zhou Y., Tang S. et al. The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Construction and Building Materials. 2021; 282:122706. DOI: 10.1016/j.conbuildmat.2021.122706. EDN HOWGYE.

25. Bikaeva Yu.V., Ibragimov R.A., Potapova L.I., Islamova G.G. Phase analysis of magnesium stone modified by additives of different nature. Technique and Technology of Silicates. 2023; 30(4):334-342. EDN IRZLDK. (rus.).

26. Savelyev A.A., Tarasova A.Yu. The role of modified fibres in the formation of a cement stone the structure. Concrete Technologies. 2011; 11-12:50-51. EDN TKANNT. (rus.).

27. Xodakov G.S. Particle physics. Moscow, Nauka, 1972; 308. (rus.).

28. Pukharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Influence of fiber type and matrix composition on adhesive strength in fiber reinforced concrete. The Russian Automobile and Highway Industry Journal. 2022; 19(3)(85):436-445. DOI: 10.26518/2071-7296-2022-19-3-436-445. EDN OZZCHD. (rus.).

29. Pukharenko Yu.V., Khrenov G.M., Klyuev S.V., Khezhev T.A., Eshanzada S.M. Design of steel fiber-reinforced concrete for slip forming. Construction Materials and Products. 2024; 7(5). DOI: 10.58224/2618-7183-2024-7-5-2. EDN IWJVLU.


Review

For citations:


Bikaeva Yu.V., Ibragimov R.A., Gimranov L.R., Korolev E.V. The influence of polypropylene fibre on the physical and mechanical properties of glass-dolomite sheets. Vestnik MGSU. 2025;20(12):1920-1934. (In Russ.) https://doi.org/10.22227/1997-0935.2025.12.1920-1934

Views: 17

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)