Preview

Vestnik MGSU

Advanced search

Singular value decomposition of dynamic response of structures

https://doi.org/10.22227/1997-0935.2023.12.1880-1891

Abstract

Introduction. This paper presents the results of the decomposition of the synthesized free damped vibrations of a linear cantilever dynamic model into elementary components using singular value decomposition of the displacement matrix.

Materials and methods. The well-known representation of a rectangular matrix in the form of a product of three matrix multipliers, called singular value decomposition (SVD), was used in the study.

Results. Representing the dynamic response of a structure in a certain matrix form allows for the results of the singular value decomposition to have a clear physical interpretation: the left singular vectors approximate the eigenvectors, the singular values themselves determine the contribution of individual eigenmodes to the overall dynamic response, and the products of singular values and right singular vectors approximate the modal coordinates of the dynamic system at the time under consideration. Singular value decomposition allows to “automatically” obtain an a priori vector basis based on the external manifestations of the dynamic reaction (displacement, velocity or acceleration of the points of the structure), whereas the eigenvectors traditionally used for these purposes are a posteriori basis based on the study of the internal inertia, stiffness and damping properties.

Conclusions. This study confirmed the possibility of using displacement matrix SVD to determine the major dynamic parameters of linear dynamic systems: eigenmodes, eigenfrequencies and quantitative damping parameters. All stages of obtaining and subsequent analysis of the dynamic response elementary components are easily automated, which allows to consider SVD as a basis for software development of automatic dynamic monitoring systems of structures under construction and in operation.

About the Author

Yu. A. Kolotovichev
Moscow State University of Civil Engineering (National Research University) (MGSU); SODIS Lab
Russian Federation

Yury A. Kolotovichev — Candidate of Technical Sciences, Associate Professor of the Department of Structural and Theoretical Mechanics; R&D Director

26 Yaroslavskoe shosse, Moscow, 129337;
5 Nobel st., Skolkovo Innovation center, Moscow, 121205

ID RSCI: 829386, Scopus: 57209541589, ResearcherID: AAC-3892-2022



References

1. Ghalishooyan M., Shooshtari A. Operational modal analysis techniques and their theoretical and practical aspects: A comprehensive review and introduction. IOMAC’15. 6th International Operational Modal Analysis Conference. 2015.

2. Belostotsky A.M., Akimov P.A., Kaytukov T.B. Mathematical and computer modeling at the heart of monitoring of buildings and structures. Moscow, Publishing House ASV, 2018; 714. (rus.).

3. Shakhraman’yan A.M., Kolotovichev Yu.A. Experience of using automated monitoring systems of the strain state of bearing structures on the olympic objects Sochi-2014. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2015; 12:92-105. DOI: 10.22227/1997-0935.2015.12.92-105 (rus.).

4. Kolotovichev Yu.A., Shakhramanyan A.M. An automated structural health monitoring system developed for Ekaterinburg Arena. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2022; 17(3):314-330. DOI: 10.22227/1997-0935.2022.3.314-330 (rus.).

5. Rainieri C., Magalhães F., Ubertini F. Automated operational modal analysis and its applications in structural health monitoring. Shock and Vibration. 2019; 2019:1-3. DOI: 10.1155/2019/5497065

6. Grosel J., Sawicki W., Pakos W. Application of classical and operational modal analysis for examination of engineering structures. Procedia Engineering. 2014; 91:136-141. DOI: 10.1016/j.proeng.2014.12.035

7. Chandravanshi M.L., Mukhopadhyay A.K. Analysis of variations in vibration behavior of vibratory feeder due to change in stiffness of helical springs using FEM and EMA methods. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2017; 39(9):3343-3362. DOI: 10.1007/s40430-017-0767-z

8. Jambovane S.R., Kalsule D.J., Athavale S.M. Validation of FE models using experimental modal analysis. SAE Technical Paper Series. 2001. DOI: 10.4271/2001-26-0042

9. Friswell M.I., Mottershead J.E. Finite element model updating in structural dynamics. Springer Dordrecht, 2010; 292.

10. Nicoletti V., Martini R., Carbonari S., Gara F. Operational modal analysis as a support for the development of digital twin models of bridges. Infrastructures. 2023; 8(2):24. DOI: 10.3390/infrastructures8020024

11. Belostotsky A.M., Dmitriev D.S., Petryashev S.O., Nagibovich T.E. Calculated assessment of the impact of geometric deviations from the design on the parameters of mechanical safety of building metal structures within the framework of scientific and technical support for construction. Structural Mechanics of Engineering Constructions and Buildings. 2021; 17(1):19-29. DOI: 10.22363/1815-5235-2021-17-1-19-29. EDN AEOWML. (rus.).

12. Brownjohn J.M.W., Magalhaes F., Caetano E., Cunha A. Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Engineering Structures. 2010; 32(8):2003-2018. DOI: 10.1016/j.engstruct.2010.02.034

13. Devriendt C., Magalhães F., El Kafafy M., De Sitter G., Cunha Á., Guillaume P. Long-term dynamic monitoring of an offshore wind turbine. Topics in Dynamics of Civil Structures. 2013; 253-267. DOI: 10.1007/978-1-4614-6555-3_28

14. Bin Zahid F., Chao Ong Z., Yee Khoo S. A review of operational modal analysis techniques for in-service modal identification. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020; 42(8). DOI: 10.1007/s40430-020-02470-8

15. Kim B.H., Stubbs N., Park T. A new method to extract modal parameters using output-only responses. Journal of Sound and Vibration. 2005; 282(1-2): 215-230. DOI: 10.1016/j.jsv.2004.02.026

16. Zhang L., Wang T., Tamura Y. A frequency–spatial domain decomposition (FSDD) method for operational modal analysis. Mechanical Systems and Signal Processing. 2010; 24(5):1227-1239. DOI: 10.1016/j.ymssp.2009.10.024

17. Brunton S.L., Kutz J.N. Data-Driven Science and Engineering. Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019; 3-46.

18. Brincker R., Zhang L., Andersen P. Modal identification of output-only systems using frequency domain decomposition. Smart Materials and Structures. 2001; 10(3):441-445. DOI: 10.1088/0964-1726/10/3/303

19. Brincker R., Andersen P., Jacobsen N.J. Automated frequency domain decomposition for operational modal analysis. IMAC-XXIV: A Conference and Exposition on Structural Dynamics Society for Experimental Mechanics. 2007.

20. Magalhães F., Caetano E., Cunha A. Operational modal analysis and finite element model correlation of the Braga Stadium suspended roof. Engineering Structures. 2008; 30(6):1688-1698. DOI: 10.1016/j.engstruct.2007.11.010

21. Clough R.W., Penzier J. Dynamics of structures. Moscow, Stroyizdat Publ., 1979; 320. (rus.).

22. Kiselev V.A. Structural mechanics: Special course. Structural dynamics and buckling. Moscow, Stroyizdat Publ., 1980; 616. (rus.).

23. Kolotovichev Yu.A., Karakozova A.I. Elementaries of Structural Dynamics : education materias. St. Petersburg, Naukoyomkie tehnologii Publ., 2023; 206. (rus.).

24. Sato Y. Signal Processing. Getting Started. Moscow, Dodeka-XXI Publ., 2009; 175. (rus.).

25. Wilson E.L. Static and Dynamic Analysis of Structures: A Physical Approach with Emphasis on Earthquake Engineering. Computers and Structures Inc. Publ., 2010; 394.

26. Welch P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics. 1967; 15(2):70-73. DOI: 10.1109/TAU.1967.1161901


Review

For citations:


Kolotovichev Yu.A. Singular value decomposition of dynamic response of structures. Vestnik MGSU. 2023;18(12):1880-1891. (In Russ.) https://doi.org/10.22227/1997-0935.2023.12.1880-1891

Views: 346


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)