Preview

Вестник МГСУ

Расширенный поиск

Современная теория и практика технологии бетонов для 3D-печати в строительстве

https://doi.org/10.22227/1997-0935.2024.2.216-245

Аннотация

Введение. Выполнен анализ научных трудов, посвященных разработке и исследованию строительных материалов, изделий и конструкций в технологии 3D-печати. Целью является выявление актуальных тенденций развития, текущих преимуществ и недостатков на основе анализа международного теоретического и практического опыта в изготовлении изделий и конструкций, достигаемых свойств материалов, используемых критериев качества и методов их оценки.

Материалы и методы. Использован комплекс общенаучных логических методов исследования, основанных на теоретическом анализе технологических решений, представленных в научно-технической литературе и средствах массовой информации, в том числе научных статьях, отчетах и материалах конференций.

Результаты. Ключевые вопросы, которые необходимо решать для развития 3D-печати, связаны с удобоукладываемостью смеси, деформацией и прочностью экструдированного слоя. Существует множество примеров составов чернил преимущественно тяжелого бетона для 3D-принтеров различного устройства. Усредненный состав такого бетона содержит по массе 25–45 % вяжущего вещества, 40–65 % заполнителя — кварцевый песок с размером зерна 2–4 мм и воду в количестве не более 15–35 %, а также минеральные добавки, пластификатор и армирующие волокна. Масштабное внедрение технологии требует разработки методик печати конструкций с учетом анизотропии их свойств в зависимости от направления печати.

Выводы. Показано, что в технологии 3D-печати сложным вопросом в реализации остается армирование конструкций. Для достижения максимальных механических свойств напечатанных конструкций требуется многокритериальная оптимизация, учитывающая реологические требования к смесям, особенности армирования и прочность сцепления слоев. Сложная оптимизация реологии бетонных смесей, особенно наполненных армирующими волокнами, дополняется факторами времени и меняющихся условий окружающей среды, которые на текущем этапе развития технологии игнорируются или принимаются как незначимые. Применение «умных» материалов в технологии послойного возведения строительных конструкций формирует пути для ее совершенствования.

Об авторе

А. С. Иноземцев
Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
Россия

Александр Сергеевич Иноземцев — кандидат технических наук, доцент кафедры строительного материаловедения

129337, г. Москва, Ярославское шоссе, д. 26

Scopus: 55889834500, ResearcherID: K-6341-2013



Список литературы

1. Научная электронная библиотека eLibrary.ru. URL: https://www.elibrary.ru

2. Scopus. URL: https://www.scopus.com

3. Buswell R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research // Cement and Concrete Research. 2018. Vol. 112. Pp. 37–49. DOI: 10.1016/j.cemconres.2018.05.006

4. Raphael B., Senthilnathan S., Patel A., Bhat S. A review of concrete 3D printed structural members // Frontiers in Built Environment. 2023. Vol. 8. DOI: 10.3389/fbuil.2022.1034020

5. Paul S.C., Zijl G.P.A.G., Tan M.J., Gibson I. A review of 3D concrete printing systems and materials properties: current status and future research prospects // Rapid Prototyping Journal. 2018. Vol. 24. Issue 4. Pp. 784–798. DOI: 10.1108/RPJ-09-2016-0154

6. Cao X., Yu S., Cui H., Li Z. 3D printing devices and reinforcing techniques for extruded cement-based materials : a review // Buildings. 2022. Vol. 12. Issue 4. P. 453. DOI: 10.3390/buildings12040453

7. Ватин Н.И., Чумадова Л.И., Гончаров И.С., Зыкова В.В., Карпеня А.Н., Ким А.А. и др. 3D-печать в строительстве // Строительство уникальных зданий и сооружений. 2017. № 1 (52). С. 27–46. DOI: 10.18720/CUBS.52.3. EDN YNESHX.

8. Иноземцев А.С., Королев Е.В., Зыонг Т.К. Анализ существующих технологических решений 3D-печати в строительстве // Вестник МГСУ. 2018. Т. 13. № 7 (118). С. 863–876. DOI: 10.22227/1997-0935.2018.7.863-876

9. Славчева Г.С. Строительная 3D-печать сегодня: потенциал, проблемы и перспективы практической реализации // Строительные материалы. 2021. № 5. С. 28–36. DOI: 10.31659/0585-430X-2021-791-5-28-36. EDN WACJMY.

10. Мухаметрахимов Р.Х., Зиганшина Л.В. Технология и контроль качества строительной 3D-печати // Известия Казанского государственного архитектурно-строительного университета. 2022. № 1 (59). С. 64–79. DOI: 10.52409/20731523_2022_1_64. EDN BZJGUO.

11. Gosselin C., Duballet R., Roux P., Gaudilliere N., Dirrenberger J., Morel P. Large-scale 3D printing of ultra-high performance concrete — A new processing route for architects and builders // Material & Design. 2016. Vol. 100. Pp. 102–109. DOI: 10.1016/j.matdes.2016.03.097

12. Panda B., Paul S.C., Hui L.J., Tay Y.W.D., Tan M.J. Additive manufacturing of geopolymer for sustainable built environment // Journal of Cleaner Production. 2017. Vol. 167. Pp. 281–288. DOI: 10.1016/j.jclepro.2017.08.165

13. Anton A., Reiter L., Wangler T., Frangez V., Flatt R.J., Dillenburger B. A 3D concrete printing prefabrication platform for bespoke columns // Automation in Construction. 2020. Vol. 122. P. 103467. DOI: 10.1016/j.autcon.2020.103467

14. Weng Y., Li M., Ruan S., Wong T.N., Tan M.J., Yeong K.L.O. et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach // Journal of Cleaner Production. 2020. Vol. 261. P. 121245. DOI: 10.1016/j.jclepro.2020.121245

15. Reiter L., Wangler T., Anton A., Flatt R.J. Setting on demand for digital concrete — Principles, measurements, chemistry, validation // Cement and Concrete Research. 2020. Vol. 132. P. 106047. DOI: 10.1016/j.cemconres.2020.106047

16. Reiter L., Wangler T., Roussel N., Flatt R.J. The role of early age structural build-up in digital fabrication with concrete // Cement and Concrete Research. 2018. Vol. 112. Pp. 86–95. DOI: 10.1016/j.cemconres.2018.05.011

17. Ashrafi N., Duarte J.P., Nazarian S., Meisel N.A. Evaluating the relationship between deposition and layer quality in large-scale additive manufacturing of concrete // Virtual and Physical Prototyping. 2018. Vol. 14. Issue 2. Pp. 135–140. DOI: 10.1080/17452759.2018.1532800

18. Vantyghem G., De Corte W., Shakour E., Amir O. 3D printing of a post-tensioned concrete girder designed by topology optimization // Automation in Construction. 2020. Vol. 112. P. 103084. DOI: 10.1016/j.autcon.2020.103084

19. Furet B., Poullain P., Garnier S. 3D printing for construction based on a complex wall of polymer-foam and concrete // Additive Manufacturing. 2019. Vol. 28. Pp. 58–64. DOI: 10.1016/j.addma.2019.04.002

20. Weng Y., Lu B., Li M., Liu Z., Tan M.-J., Qian S. Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing // Construction and Building Materials. 2018. Vol. 189. Pp. 676–685. DOI: 10.1016/j.conbuildmat.2018.09.039

21. Lim J.H., Weng Y., Pham Q.-C. 3D printing of curved concrete surfaces using Adaptable Membrane Formwork // Construction and Building Materials. 2020. Vol. 232. P. 117075. DOI: 10.1016/j.conbuildmat.2019.117075

22. Mechtcherine V., Bos F.P., Perrot A., da Silva W.R.L., Nerella V.N., Fataei S. et al. Extrusion-based additive manufacturing with cement-based materials — Production steps, processes, and their underlying physics : a review // Cement and Concrete Research. 2020. Vol. 132. P. 106037. DOI: 10.1016/j.cemconres.2020.106037

23. Craveiro F., Nazarian S., Bartolo H., Bartolo P.J., Duarte J.P. An automated system for 3D printing functionally graded concrete-based materials // Additive Manufacturing. 2020. Vol. 33. P. 101146. DOI: 10.1016/j.addma.2020.101146

24. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete // Materials and Structures. 2012. Vol. 45. Issue 8. Pp. 1221–1232. DOI: 10.1617/s11527-012-9828-z

25. D-Shape — steriolithography 3D printing technology. URL: https://www. www.d-shape.com

26. Wolfs R.J.M. 3D printing of concrete structures : MSc thesis. Department of Built Environment, Eindhoven University of Technology, 2015. 110 p.

27. Pierre A., Lanos Ch., Estelle P. Extension of spread-slump formulae for yield stress evaluation // Applied Rheology. 2013. Vol. 23. Issue 6. P. 63849. DOI: 10.3933/applrheol-23-63849

28. Perrot D., Rangeard A.J.M., Pierre A. Structural built-up of cement-based materials used for 3D printing extrusion techniques // Materials and Structures. 2016. Vol. 49. Issue 4. Pp. 1213–1220. DOI: 10.1617/s11527-015-0571-0

29. Anell L.H. Concrete 3D printer : MSc thesis. Civil Engineering, Lund Univercity, Wseden, 2015. 77 p.

30. Nerella V.N., Mechtcherine V. Studying the printability of fresh concrete for formwork-free concrete onsite 3D printing technology (CONPrint3D) // 3D Concrete Printing Technology. 2019. Pp. 333–347. DOI: 10.1016/b978-0-12-815481-6.00016-6

31. Arunothayan A.R., Nematollahi B., Ranade R., Bong S.H., Sanjayan J. Development of 3D printable ultra-high performance fiber-reinforced concrete for digital construction // Construction and Building Materials. 2020. Vol. 257. P. 119546. DOI: 10.1016/j.conbuildmat.2020.119546

32. Ding T., Xiao J., Zou S., Wang Y. Hardened properties of layered 3D printed concrete with recycled sand // Cement and Concrete Composites. 2020. Vol. 113. P. 103724. DOI: 10.1016/j.cemconcomp.2020.103724

33. Hambach M., Volkmer D. Properties of 3D printed fiber-reinforced portland cement paste // Cement and Concrete Composites. 2017. Vol. 79. Pp. 62–70. DOI: 10.1016/j.cemconcomp.2017.02.001

34. Grassi G., Spagnolo S.L., Paoletti I. Fabrication and durability testing of a 3D printed facade for desert climates // Additive Manufacturing. 2019. Vol. 28. Pp. 439–444. DOI: 10.1016/j.addma.2019.05.023

35. Strano M., Rane K., Herve G., Tosi A. Determination of process induced dimensional variations of ceramic parts, 3D printed by extrusion of a powder-binder feedstock // Procedia Manufacturing. 2019. Vol. 34. Pp. 560–565. DOI: 10.1016/j.promfg.2019.06.220

36. Villacis N., Gualavisi M., Narvaez-Munoz C., Carrion L., Loza-Matovelle D., Naranjo F. Additive manufacturing of a theological characterized cement-based composite material // Proceedings of the 2017 European Conference on Electrical Engineering and Computer Science (EECS). Bern, Switzerland, 2017. Pp. 326–331.

37. Perrot A., Jacquet Y., Rangeard D., Courteille E., Sonebi M. Nailing of layers: a promising way to reinforce concrete 3D printing structures // Materials. 2020. Vol. 13. P. 1518. DOI: 10.3390/ma13071518

38. Asprone D., Auricchio F., Menna C., Mercuri V. 3D printing of reinforced concrete elements: Technology and design approach // Construction and Building Materials. 2018. Vol. 165. Pp. 218–231. DOI: 10.1016/j.conbuildmat.2018.01.018

39. Tho T.P., Thinh N.T. Using a cable-driven parallel robot with applications in 3D concrete printing // Applied Sciences. 2021. Vol. 11. Issue 2. P. 563. DOI: 10.3390/app11020563

40. Moeini M.A., Hosseinpoor M., Yahia A. Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing // Construction and Building Materials. 2020. Vol. 257. P. 119551. DOI: 10.1016/j.conbuildmat.2020.119551

41. Visser C.R. Mechanical and structural characterisation of extrusion moulded SHCC : MSc thesis. Stellenbosch : Stellenbosch University, 2007. 116 p.

42. Kwon H., Bukkapatnam S., Khoshnevis B., Saito J.J.R.P.J. Effects of orifice shape in contour crafting of ceramic materials // Rapid Prototyping. 2002. Vol. 8. Issue 3. Pp. 147–160. DOI: 10.1108/13552540210430988

43. Malaeb Z., Hachem H., Tourbah A., Maalouf T., El Zarwi N., Hamzeh F. 3D concrete printing: machine and mix design // International Journal of Civil Engineering. 2015. Vol. 6. Issue 6. Pp. 14–22.

44. Le T.T., Austin S.A., Lim S., Buswell R.A., Law R., Gibb A.G.F. et al. Hardened properties of high-performance printing concrete // Cement and Concrete Research. 2012. Vol. 42. Pp. 558–666. DOI: 10.1016/j.cemconres.2011.12.003

45. Lim S., Buswell R.A., Le T.T., Austin S.A., Gibb A.G.F. et al. Development in construction-scale additive manufacturing processes // Automation in Construction. 2012. Vol. 21. Issue 1. Pp. 262–268. DOI: 10.1016/j.autcon.2011.06.010

46. El Cheikh K., Remond S., Khalil N., Aouad G. Numerical and experimental studies of aggregate blocking in mortar extrusion // Construction and Building Materials. 2017. Vol. 145. Pp. 452–463. DOI: 10.1016/j.conbuildmat.2017.04.032

47. Olivas A., Helsel M.A., Martys N., Ferraris C., George W.L., Ferron R. Rheological measurement of suspensions without slippage: Experiment and model. National Institute of Standards and Technology, 2016. DOI: 10.6028/NIST.TN.1946

48. Soltan D.G., Li V.C. A self-reinforced cementitious composite for building-scale 3D printing // Cement and Concrete Composites. 2018. Vol. 90. Pp. 1–13. DOI: 10.1016/j.cemconcomp.2018.03.017

49. Vergara L.A., Colorado H.A. Additive manufacturing of Portland cement pastes with additions of kaolin, super plastificant and calcium carbonate // Construction and Building Materials. 2020. Vol. 248. P. 118669. DOI: 10.1016/j.conbuildmat.2020.118669

50. Panda B., Singh G.V.P.B., Unluer C., Tan M.-J. Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing // Journal of Cleaner Production. 2019. Vol. 220. Pp. 610–619. DOI: 10.1016/j.jclepro.2019.02.185

51. Alchaar A.S., Al-Tamimi A.K. Mechanical properties of 3D printed concrete in hot temperatures // Construction and Building Materials. 2020. Vol. 266. P. 120991. DOI: 10.1016/j.conbuildmat.2020.120991

52. Nair S.A.O., Panda S., Santhanam M., Sant G., Neithalath N. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders // Cement and Concrete Composites. 2020. Vol. 112. P. 103671. DOI: 10.1016/j.cemconcomp.2020.103671

53. He L., Chow W.T., Li H. Effects of interlayer notch and shear stress on interlayer strength of 3D printed cement paste // Additive Manufacturing. 2020. Vol. 36. P. 101390. DOI: 10.1016/j.addma.2020.101390

54. Bong S.H., Nematollahi B., Nazari A., Xia M., Sanjayan J. Method of optimisation for ambient temperature cured sustainable geopolymers for 3D printing construction applications // Materials. 2019. Vol. 12. P. 902. DOI: 10.3390/ma12060902

55. Li Z., Wang L., Ma G. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions // Composites Part B: Engineering. 2020. Vol. 187. P. 107796. DOI: 10.1016/j.compositesb.2020.107796

56. Lin J.C., Wang J., Wu X., Yang W., Zhao R.X., Bao M. Effect of processing parameters on 3d printing of cement based materials // E3S Web of Conferences. 2018. Vol. 38. P. 03008. DOI: 10.1051/e3sconf/20183803008

57. Krishnaraja A.R., Guru K.V. 3D printing concrete : a review // IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1055. P. 012033. DOI: 10.1088/1757-899X/1055/1/012033

58. Rehman A.U., Kim J.-H. 3D concrete printing: a systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics // Materials. 2021. Vol. 14. P. 3800. DOI: 10.3390/ma14143800

59. Marchon D., Kawashima S., Bessaies-Bey H., Mantellato S., Ng S. Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry // Cement and Concrete Research. 2018. Vol. 112. Pp. 96–110. DOI: 10.1016/j.cemconres.2018.05.014

60. Qian Y., De Schutter G. Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE) // Cement and Concrete Research. 2018. Vol. 111. Pp. 15–22. DOI: 10.1016/j.cemconres.2018.06.013

61. Lee H., Kim J.-H.J., Moon J.-H., Kim W.-W., Seo E.-A. Experimental analysis on rheological properties for control of concrete extrudability // Advances in Concrete Construction. 2020. Vol. 9. Pp. 93–102. DOI: 10.12989/acc.2020.9.1.093

62. Rahul A.V., Santhanam M. Evaluating the printability of concretes containing lightweight coarse aggregates // Cement and Concrete Composites. 2020. Vol. 109. P. 103570. DOI: 10.1016/j.cemconcomp.2020.103570

63. Mechtcherine V., Nerella V.N., Will F., Nather M., Otto J., Krause M. Large-scale digital concrete construction — CONPrint3D concept for on-site, monolithic 3D printing // Automation in Construction. 2019. Vol. 107. P. 102933. DOI: 10.1016/j.autcon.2019.102933

64. Nerella V.N., Beigh M.A.B., Fataei S., Mechtcherine V. Strain-based approach for measuring structural build-up of cement pastes in the context of digital construction // Cement and Concrete Research. 2019. Vol. 115. Pp. 530–544. DOI: 10.1016/j.cemconres.2018.08.003

65. Bong S.H., Nematollahi B., Nazari A., Xia M., Sanjayan J.G. Fresh and hardened properties of 3D printable geopolymer cured in ambient temperature // In Proceedings of the RILEM International Conference on Concrete and Digital Fabrication, Zurich, Switzerland, 2018. Pp. 3–11.

66. Tay Y.W.D., Qian Y., Tan M.J. Printability region for 3D concrete printing using slump and slump flow test // Composites Part B: Engineering. 2019. Vol. 174. P. 106968. DOI: 10.1016/j.compositesb.2019.106968

67. Zhang Y., Zhang Y., Liu G., Yang Y., Wu M., Pang B. Fresh properties of a novel 3D printing concrete ink // Construction and Building Materials. 2018. Vol. 174. Pp. 263–271. DOI: 10.1016/j.conbuildmat.2018.04.115

68. Kruger J., Zeranka S., van Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete // Construction and Building Materials. 2019. Vol. 224. Pp. 372–386. DOI: 10.1016/j.conbuildmat.2019.07.078

69. Kazemian A., Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture // Construction and Building Materials. 2017. Vol. 145. Pp. 639–647.

70. Jiao D., Shi C., Yuan Q., An X., Liu Y., Li H. Effect of constituents on rheological properties of fresh concrete : a review // Cement and Concrete Composites. 2017. Vol. 83. Pp. 146–159. DOI: 10.1016/j.cemconcomp.2017.07.016

71. Zhang Ch., Nerella V.N., Krishna A., Wang Sh., Zhang Y., Mechtcherine V. et al. Mix design concepts for 3D printable concrete : a review // Cement and Concrete Composites. 2021. Vol. 122. P. 104155. DOI: 10.1016/j.cemconcomp.2021.104155

72. Иноземцев А.С., Королев Е.В. Высоко-прочные легкие бетоны : монография. СПб. : Санкт-Петербургский государственный архитектурно-строительный университет, 2022. 192 с. EDN UCJRAZ.

73. Inozemtcev A., Korolev E., Duong T.Q. Lightweight concrete for 3D printing with internal curing agent for Portland cement hydration // Magazine of Civil Engineering. 2022. No. 1 (109). P. 10915. DOI: 10.34910/MCE.109.15. EDN EPQPUI.

74. Королев Е.В., Зыонг Т.К., Иноземцев А.С. Способ обеспечения внутреннего ухода за гидра-тацией цемента в составах для 3D-печати // Вестник МГСУ. 2020. Т. 15. № 6. С. 834–846. DOI: 10.22227/1997-0935.2020.6.834-846

75. Inozemtcev A., Duong T.Q. Technical and economic efficiency of materials using 3D printing in construction on the example of high-strength lightweight fiber-reinforced concrete // E3S Web of Conferences. 2019. P. 02010. DOI: 10.1051/e3sconf/20199702010

76. Weng Y., Li M., Tan M.J., Qian S. Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model // Construction and Building Materials. 2018. Vol. 163. Pp. 600–610. DOI: 10.1016/j.conbuildmat.2017.12.112

77. Mahaut F., Mokeddem S., Chateau X., Roussel N., Ovarlez G. Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials // Cement and Concrete Research. 2008. Vol. 38. Issue 11. Pp. 1276–1285. DOI: 10.1016/j.cemconres.2008.06.001

78. Toutou Z., Roussel N. Multi scale experimental study of concrete rheology: from water scale to gravel scale // Materials and Structures. 2006. Vol. 39. Issue 2. Pp. 189–199. DOI: 10.1617/s11527-005-9047-y

79. Noor M.A., Uomoto T. Rheology of high flowing mortar and concrete // Materials and Structures. 2004. Vol. 37. Issue 272. Pp. 513–521. DOI: 10.1617/13965

80. Wangler T., Lloret E., Reiter L., Hack N., Gramazio F., Kohler M. et al. Digital concrete: opportunities and challenges // RILEM Technical Letters. 2016. Vol. 1. Pp. 67–75. DOI: 10.21809/rilemtechlett.2016.16

81. Weng Y., Lu B., Li M., Liu Z., Tan M.J., Qian S. Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing // Construction and Building Materials. 2018. Vol. 189. Pp. 676–685. DOI: 10.1016/j.conbuildmat.2018.09.039

82. Chen M., Li L., Zheng Y., Zhao P., Lu L., Cheng X. Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials // Construction and Building Materials. 2018. Vol. 189. Pp. 601–611. DOI: 10.1016/j.conbuildmat.2018.09.037

83. Roussel N., Ovarlez G., Garrault S., Brumaud C. The origins of thixotropy of fresh cement pastes // Cement and Concrete Research. 2012. Vol. 42. Issue 1. Pp. 148–157. DOI: 10.1016/j.cemconres.2011.09.004

84. Ma G., Li Y., Wang L., Zhang J., Li Z. Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers // Construction and Building Materials. 2020. Vol. 241. P. 117982. DOI: 10.1016/j.conbuildmat.2019.117982

85. Wang L., Tian Z., Ma G., Zhang M. Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: Experiments and molecular dynamics studies // Cement and Concrete Composites. 2020. Vol. 110. P. 103571. DOI: 10.1016/j.cemconcomp.2020.103571

86. Suiker A.S.J., Wolfs R.J.M., Lucas S.M., Salet T.A.M. Elastic buckling and plastic collapse during 3D concrete printing // Cement and Concrete Research. 2020. Vol. 135. P. 106016. DOI: 10.1016/j.cemconres.2020.106016

87. Wolfs R.J.M., Bos F.P., Salet T.A.M. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing // Cement and Concrete Composites. 2019. Vol. 104. P. 103344. DOI: 10.1016/j.cemconcomp.2019.103344

88. Chen Y., Figueiredo S.C., Li Z., Chang Z., Jansen K., Copuroglu O. et al. Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture // Cement and Concrete Research. 2020. Vol. 132. P. 106040. DOI: 10.1016/j.cemconres.2020.106040

89. Vaitkevicius V., Serelis E., Kersevicius V. Effect of ultra-sonic activation on early hydration process in 3D concrete printing technology // Construction and Building Materials. 2018. Vol. 169. Pp. 354–363. DOI: 10.1016/j.conbuildmat.2018.03.007

90. Xiao J., Zou S., Yu Y., Wang Y., Ding T., Zhu Y. et al. 3D recycled mortar printing: System development, process design, material properties and on-site printing // Journal of Building Engineering. 2020. Vol. 32. P. 101779. DOI: 10.1016/j.jobe.2020.101779

91. Perrot A., Rangeard D. 3D printing in concrete: techniques for extrusion/casting // 3D Printing of Concrete. 2019. Pp. 41–72.

92. Баженов Ю.М. Модифицированные высоко-качественные бетоны. М. : Изд-во АСВ, 2006. 368 с. EDN QNMNZZ.

93. Lu B., Weng Y., Li M., Qian Y., Leong K.F., Tan M.J. et al. A systematical review of 3D printable cementitious materials // Construction and Building Materials. 2019. Vol. 207. Pp. 477–490. DOI: 10.1016/j.conbuildmat.2019.02.144

94. Wangler T. Digital concrete: research and applications // Proceedings of the 10th International Concrete Congress. 2019. Vol. 35. Pp. 2–12.

95. Al Rashid A., Khan S.A., Al-Ghamdi S.G., Koc M. Additive manufacturing: Technology, applications, markets, and opportunities for the built environment // Automation in Construction. 2020. Vol. 118. P. 103268. DOI: 10.1016/j.autcon.2020.103268

96. Roussel N. A thixotropy model for fresh fluid concretes: Theory, validation and applications // Cement and Concrete Research. 2006. Vol. 36. Pp. 1797–1806. DOI: 10.1016/j.cemconres.2006.05.025

97. Panda B., Unluer C., Tan M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing // Cement and Concrete Composites. 2018. Vol. 94. Pp. 307–314. DOI: 10.1016/j.cemconcomp.2018.10.002

98. Panda B., Tan M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing // Ceramics International. 2018. Vol. 44. Pp. 10258–10265. DOI: 10.1016/j.ceramint.2018.03.031

99. Rahul A.V., Santhanam M., Meena H., Ghani Z. 3D printable concrete: Mixture design and test methods // Cement and Concrete Composites. 2019. Vol. 97. Pp. 13–23. DOI: 10.1016/j.cemconcomp.2018.12.014

100. Nerella V., Nather M., Iqbal A., Butler M., Mechtcherine V.J.C. Inline quantification of extrudability of cementitious materials for digital construction // Cement and Concrete Composites. 2019. Vol. 95. Pp. 260–270. DOI: 10.1016/j.cemconcomp.2018.09.015

101. Panda B., Mohamed N., Ahamed N., Paul S.C., Bhagath Singh G., Tan M.J. et al. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete // Materials. 2019. Vol. 12. P. 2149. DOI: 10.3390/ma12132149

102. Chen M., Yang L., Zheng Y., Huang Y., Li L., Zhao P. et al. Yield stress and thixotropy control of 3D printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up // Construction and Building Materials. 2020. Vol. 252. P. 119090. DOI: 10.1016/j.conbuildmat.2020.119090

103. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G., Thorpe T.J.M. Mix design and fresh properties for high-performance printing concrete // Materials and Structures. 2012. Vol. 45. Pp. 1221–1232. DOI: 10.1617/s11527-012-9828-z

104. Zhang Y., Zhang Y., She W., Yang L., Liu G., Yang Y. Rheological and harden properties of the high-thixotropy 3D printing concrete // Construction and Building Materials. 2019. Vol. 201. Pp. 278–285. DOI: 10.1016/j.conbuildmat.2018.12.061

105. Keita E., Bessaies-Bey H., Zuo W., Belin P., Roussel N. Weak bond strength between successive layers in extrusion-based additive manufacturing: Measurement and physical origin // Cement and Concrete Research. 2019. Vol. 123. P. 105787. DOI: 10.1016/j.cemconres.2019.105787

106. Kruger J., Cho S., Zeranka S., Viljoen C., van Zijl G. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse // Composites Part B: Engineering. 2020. Vol. 183. P. 107660. DOI: 10.1016/j.compositesb.2019.107660

107. Jolin M., Burns D., Bissonnette B., Gagnon F., Bolduc L.S. Understanding the pumability of concrete // Proceedings for the conference Shotcrete for Underground Support (XI). Davos, Switzerland. 2009.

108. Mechtcherine V., Nerella V.N., Kasten K. Testing pumpability of concrete using Sliding Pipe Rheometer // Construction and Building Materials. 2014. Vol. 53. Pp. 312–323. DOI: 10.1016/j.conbuildmat.2013.11.037

109. Tay Y.W.D., Qian Y., Tan M.J. Printability region for 3D concrete printing using slump and slump flow test // Composites Part B: Engineering. 2019. Vol. 174. P. 106968. DOI: 10.1016/j.compositesb.2019.106968

110. Thrane L.N., Pade C., Nielsen C.V. Determination of rheology of self-consolidating concrete using the 4C-Rheometer and how to make use of the results // Journal of ASTM International. 2009. Vol. 7. Issue 1. Pp. 1–10. DOI: 10.1520/JAI102003

111. Mohan M.K., Rahul A.V., Van Tittelboom K., De Schutter G. Evaluating the influence of aggregate content on pumpability of 3D printable concrete // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 333–341.

112. Mohan M.K., Rahul A.V., Van Tittelboom K., De Schutter G. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content // Cement and Concrete Research. 2021. Vol. 139. P. 106258. DOI: 10.1016/j.cemconres.2020.106258

113. Matthaus C., Back D., Weger D., Krankel T., Scheydt J., Gehlen C. Effect of cement type and limestone powder content on extrudability of lightweight concrete // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 312–322.

114. Zhou C., Chen R., Xu J., Ding L., Luo H., Fan J. et al. In-situ construction method for lunar habitation: Chinese Super Mason // Automation in Construction. 2019. Vol. 104. Pp. 66–79. DOI: 10.1016/j.autcon.2019.03.024

115. Burry J., Sabin J.E., Sheil B., Skavara M. Fabricate 2020. UCL Press: London, UK. 2020. 140 p.

116. Jeong H., Han S.-J., Choi S.-H., Lee Y.J., Yi S.T., Kim K.S. Rheological property criteria for buildable 3D printing concrete // Materials. 2019. Vol. 12. P. 657. DOI: 10.3390/ma12040657

117. Panda B., Paul S.C., Mohamed N.A.N., Tay Y.W.D., Tan M.J. Measurement of tensile bond strength of 3D printed geopolymer mortar // Measurement. 2018. Vol. 113. Pp. 108–116. DOI: 10.1016/j.measurement.2017.08.051

118. Zareiyan B., Khoshnevis B. Interlayer adhesion and strength of structures in contour crafting — effects of aggregate size, extrusion rate, and layer thickness // Automation in Construction. 2017. Vol. 81. Pp. 112–121. DOI: 10.1016/j.autcon.2017.06.013

119. Katzer J., Szatkiewicz T. Properties of concrete elements with 3D printed formworks which substitute steel reinforcement // Construction and Building Materials. 2019. Vol. 210. Pp. 157–161. DOI: 10.1016/j.conbuildmat.2019.03.204

120. Salazar B., Aghdasi P., Williams I.D., Ostertag C.P., Taylor H.K. Polymer lattice-reinforcement for enhancing ductility of concrete // Materials & Design. 2020. Vol. 196. P. 109184. DOI: 10.1016/j.matdes.2020.109184

121. Sanjayan J.G., Nematollahi B., Xia M., Marchment T. Effect of surface moisture on interlayer strength of 3D printed concrete // Construction and Building Materials. 2018. Vol. 172. Pp. 468–475. DOI: 10.1016/j.conbuildmat.2018.03.232

122. Van Der Putten J., Deprez M., Cnudde V., De Schutter G., Van Tittelboom K. Microstructural characterization of 3D printed cementitious materials // Materials. 2019. Vol. 12. P. 2993. DOI: 10.3390/ma12182993

123. Van Der Putten J., De Schutter G., Van Tittelboom K. Surface modification as a technique to improve inter-layer bonding strength in 3D printed cementitious materials // RILEM Technical Letters. 2019. Vol. 4. Pp. 33–38.

124. Ma G., Li Z., Wang L., Wang F., Sanjayan J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing // Construction and Building Materials. 2019. Vol. 202. Pp. 770–783. DOI: 10.1016/j.conbuildmat.2019.01.008

125. Ogura H., Nerella V.N., Mechtcherine V. Developing and testing of strain-hardening cement-based composites (SHCC) in the context of 3D printing // Materials. 2018. Vol. 11. P. 1375. DOI: 10.3390/ma11081375

126. Farina I., Fabbrocino F., Carpentieri G., Modano M., Amendola A., Goodall R. et al. On the rein-forcement of cement mortars through 3D printed polymeric and metallic fibers // Composites Part B: Engineering. 2016. Vol. 90. Pp. 76–85. DOI: 10.1016/j.compositesb.2015.12.006

127. Rubio M., Sonebi M., Amziane S. Fresh and rheological properties of 3D printing bio-cement-based materials // Academic Journal of Civil Engineering. 2017. Vol. 35. Pp. 283–290.

128. Bos F.P., Ahmed Z.Y., Wolfs R.J., Salet T.A. 3D printing concrete with reinforcement // High Tech Concrete: Where Technology and Engineering Meet. 2018. Pp. 2484–2493.

129. Bos F.P., Ahmed Z.Y., Jutinov E.R., Salet T.A.M. Experimental exploration of metal cable as reinforcement in 3D printed concrete // Materials. 2017. Vol. 10. P. 1314. DOI: 10.3390/ma10111314

130. Mechtcherine V., Michael A., Liebscher M., Schmeier T. Extrusion-based additive manufacturing with carbon reinforced concrete: concept and feasibility study // Materials. 2020. Vol. 13. P. 2568. DOI: 10.3390/ma13112568

131. Bos F., Dezaire S., Ahmed Z., Hoekstra A., Salet T. Bond of reinforcement cable in 3D printed concrete // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 584–600.

132. Bester F., van den Heever M., Kruger J., Cho S., van Zijl G. Steel fiber links in 3D printed concrete // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 398–406.

133. Geneidy O., Kumarji S., Dubor A., Sollazzo A. Simultaneous reinforcement of concrete while 3D printing // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 895–905.

134. Marchment T., Sanjayan J. Penetration reinforcing method for 3D concrete printing // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 680–690.

135. Marchment T., Sanjayan J. Mesh reinforcing method for 3D concrete printing // Automation in Construction. 2020. Vol. 109. P. 102992. DOI: 10.1016/j.autcon.2019.102992

136. Wang W., Konstantinidis N., Austin S.A., Buswell R.A., Cavalaro S., Cecinia D. Flexural behaviour of AR-glass textile reinforced 3D printed concrete beams // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 728–737.

137. Lin A., Tan Y.K., Wang C.-H., Kua H.W., Taylor H. Utilization of waste materials in a novel mortar–polymer laminar composite to be applied in construction 3D printing // Composite Structures. 2020. Vol. 253. P. 112764. DOI: 10.1016/j.compstruct.2020.112764

138. Mechtcherine V., Grafe J., Nerella V.N., Spaniol E., Hertel M., Fussel U. 3D printed steel reinforcement for digital concrete construction — Manufacture, mechanical properties and bond behavior // Construction and Building Materials. 2018. Vol. 179. Pp. 125–137. DOI: 10.1016/j.conbuildmat.2018.05.202

139. Regulation and permitting for 3D printed construction — automate construction. URL: https://automate.construction/2020/03/29/regulation-and-permitting-for-3d-printed-construction

140. ICON — 3D Technology. ICON develops advanced construction technologies that advance humanity by using 3D printing robotics, software and advanced materials. URL: https://www.iconbuild.com

141. Apis Cor. We print buildings. URL: https://apis-cor.com

142. COBOD. COBOD is the world leader in 3D construction printing solutions. We are continuously adding wider automation and robotics to construction. URL: https://cobod.com


Рецензия

Для цитирования:


Иноземцев А.С. Современная теория и практика технологии бетонов для 3D-печати в строительстве. Вестник МГСУ. 2024;19(2):216-245. https://doi.org/10.22227/1997-0935.2024.2.216-245

For citation:


Inozemtcev A.S. Modern theory and practice of concrete technology for 3D printing in construction. Vestnik MGSU. 2024;19(2):216-245. (In Russ.) https://doi.org/10.22227/1997-0935.2024.2.216-245

Просмотров: 526


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)