Modern theory and practice of concrete technology for 3D printing in construction
https://doi.org/10.22227/1997-0935.2024.2.216-245
Abstract
Introduction. The analysis of scientific works devoted to the development and research of building materials, products and structures in 3D printing technology was carried out in this work. The purpose of the research is to identify actual development trends, current advantages and disadvantages based on an analysis of international theoretical and practical experience in the manufacture of products and structures, achieved properties of materials, used quality criteria and methods for their evaluation.
Materials and methods. The complex of general scientific logical methods of research based on theoretical analysis of technological solutions presented in scientific and technical literature, information resources from developers and media recourses, including patents, scientific articles and scientific reports are used in this paper.
Results. The key issues that need to be addressed for the development of 3D printing are related to mixture workability, deformation and extruded layer strength. There are many examples of ink compositions for 3D printers of various devices with high performance. The average composition of concrete for 3D printing contains binder, aggregate, water and mineral additives, plasticizer and reinforcing fibres. Large-scale implementation of the technology requires the development of methods for printing structural elements, taking into account the anisotropy of their properties depending on the printing direction.
Conclusions. The reinforcement of structures remains a complex issue in 3D printing technology. To achieve maximum mechanical properties of printed structures, multicriteria optimization is required, taking into account rheological requirements for mixtures, reinforcement peculiarities and due to the arrangement of metal elements and the adhesion strength of layers. The complex optimization of the rheology of concrete mixtures, especially those filled with reinforcing fibres, is supplemented by the factors of time and changing environmental conditions, which are ignored or accepted as insignificant at the current stage of technology development. The application of “smart” materials forms the way for its improvement.
Keywords
About the Author
A. S. InozemtcevRussian Federation
Aleksandr S. Inozemtcev — Candidate of Technical Sciences, Associate Professor of the Department of Construction Materials Science
26 Yaroslavskoe shosse, Moscow, 129337
Scopus: 55889834500, ResearcherID: K-6341-2013,
References
1. Scientific electronic library eLibrary.ru. URL: https://www.elibrary.ru (rus.).
2. Scopus. URL: https://www.scopus.com
3. Buswell R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research. 2018; 112:37-49. DOI: 10.1016/j.cemconres.2018.05.006
4. Raphael B., Senthilnathan S., Patel A., Bhat S. A review of concrete 3D printed structural members. Frontiers in Built Environment. 2023; 8. DOI: 10.3389/fbuil.2022.1034020
5. Paul S.C., Zijl G.P.A.G., Tan M.J., Gibson I. A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyping Journal. 2018; 24(4):784-798. DOI: 10.1108/RPJ-09-2016-0154
6. Cao X., Yu S., Cui H., Li Z. 3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials : a review. Buildings. 2022; 12(4):453. DOI: 10.3390/buildings12040453
7. Vatin N., Chumadova L., Goncharov I., Zykova V., Karpenya A., Kim A. et al. 3D printing in construction. Construction of Unique Buildings and Structures. 2017; 1(52):27-46. DOI: 10.18720/CUBS.52.3. EDN YNESHX. (rus.).
8. Inozemtcev A.S., Korolev E.V., Duong Thanh Qui. Analysis of existing technological solutions of 3D printing in construction. Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2018; 13(7):(118):863-876. DOI: 10.22227/1997-0935.2018.7.863-876 (rus.).
9. Slavcheva G.S. 3D-build printing today: potential, challenges and prospects for implementation. Construction Materials. 2021; 5:28-36. DOI: 10.31659/0585-430X-2021-791-5-28-36. EDN WACJMY. (rus.).
10. Mukhametrakhimov R.Kh., Ziganshina L.V. Technology and quality control of 3DCP. Proceedings of the Kazan State University of Architecture and Civil Engineering. 2022; 1(59):64-79. DOI: 10.52409/20731523_2022_1_64. EDN BZJGUO. (rus.).
11. Gosselin C., Duballet R., Roux P., Gaudilliere N., Dirrenberger J., Morel P. Large-scale 3D printing of ultra-high performance concrete — A new processing route for architects and builders. Material & Design. 2016; 100:102-109. DOI: 10.1016/j.matdes.2016.03.097
12. Panda B., Paul S.C., Hui L.J., Tay Y.W.D., Tan M.J. Additive manufacturing of geopolymer for sustainable built environment. Journal of Cleaner Production. 2017; 167:281-288. DOI: 10.1016/j.jclepro.2017.08.165
13. Anton A., Reiter L., Wangler T., Frangez V., Flatt R.J., Dillenburger B. A 3D concrete printing prefabrication platform for bespoke columns. Automation in Construction. 2020; 122:103467. DOI: 10.1016/j.autcon.2020.103467
14. Weng Y., Li M., Ruan S., Wong T.N., Tan M.J., Yeong K.L.O. et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. Journal of Cleaner Production. 2020; 261:121245. DOI: 10.1016/j.jclepro.2020.121245
15. Reiter L., Wangler T., Anton A., Flatt R.J. Setting on demand for digital concrete — Principles, measurements, chemistry, validation. Cement and Concrete Research. 2020; 132:106047. DOI: 10.1016/j.cemconres.2020.106047
16. Reiter L., Wangler T., Roussel N., Flatt R.J. The role of early age structural build-up in digital fabrication with concrete. Cement and Concrete Research. 2018; 112:86-95. DOI: 10.1016/j.cemconres.2018.05.011
17. Ashrafi N., Duarte J.P., Nazarian S., Meisel N.A. Evaluating the relationship between deposition and layer quality in large-scale additive manufacturing of concrete. Virtual and Physical Prototyping. 2018; 14(2):135-140. DOI: 10.1080/17452759.2018.1532800
18. Vantyghem G., De Corte W., Shakour E., Amir O. 3D printing of a post-tensioned concrete girder designed by topology optimization. Automation in Construction. 2020; 112:103084. DOI: 10.1016/j.autcon.2020.103084
19. Furet B., Poullain P., Garnier S. 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing. 2019; 28:58-64. DOI: 10.1016/j.addma.2019.04.002
20. Weng Y., Lu B., Li M., Liu Z., Tan M.-J., Qian S. Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. Construction and Building Materials. 2018; 189:676-685. DOI: 10.1016/j.conbuildmat.2018.09.039
21. Lim J.H., Weng Y., Pham Q.-C. 3D printing of curved concrete surfaces using Adaptable Membrane Formwork. Construction and Building Materials. 2020; 232:117075. DOI: 10.1016/j.conbuildmat.2019.117075
22. Mechtcherine V., Bos F.P., Perrot A., da Silva W.R.L., Nerella V.N., Fataei S. et al. Extrusion-based additive manufacturing with cement-based materials — Production steps, processes, and their underlying physics : a review. Cement and Concrete Research. 2020; 132:106037. DOI: 10.1016/j.cemconres.2020.106037
23. Craveiro F., Nazarian S., Bartolo H., Bartolo P.J., Duarte J.P. An automated system for 3D printing functionally graded concrete-based materials. Additive Manufacturing. 2020; 33:101146. DOI: 10.1016/j.addma.2020.101146
24. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Materials and Structures. 2012; 45(8):1221-1232. DOI: 10.1617/s11527-012-9828-z
25. D-Shape — steriolithography 3D printing technology. URL: https://www. www.d-shape.com
26. Wolfs R.J.M. 3D Printing of Concrete Structures : MSc thesis. Department of Built Environment, Eindhoven University of Technology, 2015; 110.
27. Pierre A., Lanos Ch., Estelle P. Extension of spread-slump formulae for yield stress evaluation. Applied Rheology. 2013; 23(6):63849. DOI: 10.3933/applrheol-23-63849
28. Perrot D., Rangeard A.J.M., Pierre A. Structural built-up of cement-based materials used for 3D printing extrusion techniques. Materials and Structures. 2016; 49(4):1213-1220. DOI: 10.1617/s11527-015-0571-0
29. Anell L.H. Concrete 3D printer : MSc thesis. Civil Engineering, Lund Univercity, Wseden, 2015; 77.
30. Nerella V.N., Mechtcherine V. Studying the printability of fresh concrete for formwork-free concrete onsite 3D printing technology (CONPrint3D). 3D Concrete Printing Technology. 2019; 333-347. DOI: 10.1016/b978-0-12-815481-6.00016-6
31. Arunothayan A.R., Nematollahi B., Ranade R., Bong S.H., Sanjayan J. Development of 3D printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials. 2020; 257:119546. DOI: 10.1016/j.conbuildmat.2020.119546
32. Ding T., Xiao J., Zou S., Wang Y. Hardened properties of layered 3D printed concrete with recycled sand. Cement and Concrete Composites. 2020; 113:103724. DOI: 10.1016/j.cemconcomp.2020.103724
33. Hambach M., Volkmer D. Properties of 3D printed fiber-reinforced portland cement paste. Cement and Concrete Composites. 2017; 79:62-70. DOI: 10.1016/j.cemconcomp.2017.02.001
34. Grassi G., Spagnolo S.L., Paoletti I. Fabrication and durability testing of a 3D printed façade for desert climates. Additive Manufacturing. 2019; 28:439-444. DOI: 10.1016/j.addma.2019.05.023
35. Strano M., Rane K., Herve G., Tosi A. Determination of process induced dimensional variations of ceramic parts, 3D printed by extrusion of a powder-binder feedstock. Procedia Manufacturing. 2019; 34:560-565. DOI: 10.1016/j.promfg.2019.06.220
36. Villacis N., Gualavisi M., Narvaez-Munoz C., Carrion L., Loza-Matovelle D., Naranjo F. Additive manufacturing of a theological characterized cement-based composite material. Proceedings of the 2017 European Conference on Electrical Engineering and Computer Science (EECS). 2017; 326-331.
37. Perrot A., Jacquet Y., Rangeard D., Courteille E., Sonebi M. Nailing of layers: a promising way to reinforce concrete 3D printing structures. Materials. 2020; 13:1518. DOI: 10.3390/ma13071518
38. Asprone D., Auricchio F., Menna C., Mercuri V. 3D printing of reinforced concrete elements: Technology and design approach. Construction and Building Materials. 2018; 165:218-231. DOI: 10.1016/j.conbuildmat.2018.01.018
39. Tho T.P., Thinh N.T. Using a Cable-Driven Parallel Robot with Applications in 3D Concrete Printing. Applied Sciences. 2021; 11(2):563. DOI: 10.3390/app11020563
40. Moeini M.A., Hosseinpoor M., Yahia A. Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing. Construction and Building Materials. 2020; 257:119551. DOI: 10.1016/j.conbuildmat.2020.119551
41. Visser C.R. Mechanical and structural characterisation of extrusion moulded SHCC : MSc thesis. Stellenbosch, Stellenbosch University, 2007.
42. Kwon H., Bukkapatnam S., Khoshnevis B., Saito J.J.R.P.J. Effects of orifice shape in contour crafting of ceramic materials. Rapid Prototyping. 2002; 8(3):147-160. DOI: 10.1108/13552540210430988
43. Malaeb Z., Hachem H., Tourbah A., Maalouf T., El Zarwi N., Hamzeh F. 3D concrete printing: machine and mix design. International Journal of Civil Engineering. 2015; 6(6):14-22.
44. Le T.T., Austin S.A., Lim S., Buswell R.A., Law R., Gibb A.G.F. et al. Hardened properties of high-performance printing concrete. Cement and Concrete Research. 2012; 42:558-666. DOI: 10.1016/j.cemconres.2011.12.003
45. Lim S., Buswell R.A., Le T.T., Austin S.A., Gibb A.G.F., Thorpe T. Development in construction-scale additive manufacturing processes. Automation in Construction. 2012; 21(1):262-268. DOI: 10.1016/j.autcon.2011.06.010
46. El Cheikh K., Remond S., Khalil N., Aouad G. Numerical and experimental studies of aggregate blocking in mortar extrusion. Construction and Building Materials. 2017; 145:452-463. DOI: 10.1016/j.conbuildmat.2017.04.032
47. Olivas A., Helsel M.A., Martys N., Ferraris C., George W.L., Ferron R. Rheological Measurement of Suspensions Without Slippage: Experiment and Model. National Institute of Standards and Technology, 2016. DOI: 10.6028/NIST.TN.1946
48. Soltan D.G., Li V.C. A self-reinforced cementitious composite for building-scale 3D printing. Cement and Concrete Composites. 2018; 90:1-13. DOI: 10.1016/j.cemconcomp.2018.03.017
49. Vergara L.A., Colorado H.A. Additive manufacturing of Portland cement pastes with additions of kaolin, super plastificant and calcium carbonate. Construction and Building Materials. 2020; 248:118669. DOI: 10.1016/j.conbuildmat.2020.118669
50. Panda B., Singh G.V.P.B., Unluer C., Tan M.-J. Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. Journal of Cleaner Production. 2019; 220:610-619. DOI: 10.1016/j.jclepro.2019.02.185
51. Alchaar A.S., Al-Tamimi A.K. Mechanical properties of 3D printed concrete in hot temperatures. Construction and Building Materials. 2020; 266:120991. DOI: 10.1016/j.conbuildmat.2020.120991
52. Nair S.A.O., Panda S., Santhanam M., Sant G., Neithalath N. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders. Cement and Concrete Composites. 2020; 112:103671. DOI: 10.1016/j.cemconcomp.2020.103671
53. He L., Chow W.T., Li H. Effects of interlayer notch and shear stress on interlayer strength of 3D printed cement paste. Additive Manufacturing. 2020; 36:101390. DOI: 10.1016/j.addma.2020.101390
54. Bong S.H., Nematollahi B., Nazari A., Xia M., Sanjayan J. Method of optimisation for ambient temperature cured sustainable geopolymers for 3D printing construction applications. Materials. 2019; 12:902. DOI: 10.3390/ma12060902
55. Li Z., Wang L., Ma G. Mechanical improve-ment of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions. Composites Part B: Engineering. 2020; 187:107796. DOI: 10.1016/j.compositesb.2020.107796
56. Lin J.C., Wang J., Wu X., Yang W., Zhao R.X., Bao M. Effect of processing parameters on 3D printing of cement based materials. E3S Web of Conferences. 2018; 38:03008. DOI: 10.1051/e3sconf/20183803008
57. Krishnaraja A.R., Guru K.V. 3D Printing Concrete : a review. IOP Conference Series: Materials Science and Engineering. 2021; 1055:012033. DOI: 10.1088/1757-899X/1055/1/012033
58. Rehman A.U., Kim J.-H. 3D concrete printing: a systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials. 2021; 14:3800. DOI: 10.3390/ma14143800
59. Marchon D., Kawashima S., Bessaies-Bey H., Mantellato S., Ng S. Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry. Cement and Concrete Research. 2018; 112:96-110. DOI: 10.1016/j.cemconres.2018.05.014
60. Qian Y., De Schutter G. Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE). Cement and Concrete Research. 2018; 111:15-22. DOI: 10.1016/j.cemconres.2018.06.013
61. Lee H., Kim J.-H. J., Moon J.-H., Kim W.-W., Seo E.-A. Experimental analysis on rheological properties for control of concrete extrudability. Advances in Concrete Construction. 2020; 9:93-102. DOI: 10.12989/acc.2020.9.1.093
62. Rahul A.V., Santhanam M. Evaluating the printability of concretes containing lightweight coarse aggregates. Cement and Concrete Composites. 2020; 109:103570. DOI: 10.1016/j.cemconcomp.2020.103570
63. Mechtcherine V., Nerella V.N., Will F., Nather M., Otto J., Krause M. Large-scale digital concrete construction — CONPrint3D concept for on-site, monolithic 3D printing. Automation in Construction. 2019; 107:102933. DOI: 10.1016/j.autcon.2019.102933
64. Nerella V.N., Beigh M.A.B., Fataei S., Mechtcherine V. Strain-based approach for measuring structural build-up of cement pastes in the context of digital construction. Cement and Concrete Research. 2019; 115:530-544. DOI: 10.1016/j.cemconres.2018.08.003
65. Bong S.H., Nematollahi B., Nazari A., Xia M., Sanjayan J.G. Fresh and hardened properties of 3D printable geopolymer cured in ambient temperature. Proceedings of the RILEM International Conference on Concrete and Digital Fabrication. 2018; 3-11.
66. Tay Y.W.D., Qian Y., Tan M.J. Printability region for 3D concrete printing using slump and slump flow test. Composites Part B: Engineering. 2019; 174:106968. DOI: 10.1016/j.compositesb.2019.106968
67. Zhang Y., Zhang Y., Liu G., Yang Y., Wu M., Pang B. Fresh properties of a novel 3D printing concrete ink. Construction and Building Materials. 2018; 174:263-271. DOI: 10.1016/j.conbuildmat.2018.04.115
68. Kruger J., Zeranka S., van Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Construction and Building Materials. 2019; 224:372-386. DOI: 10.1016/j.conbuildmat.2019.07.078
69. Kazemian A., Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials. 2017; 145:639-647.
70. Jiao D., Shi C., Yuan Q., An X., Liu Y., Li H. Effect of constituents on rheological properties of fresh concrete : a review. Cement and Concrete Composites. 2017; 83:146-159. DOI: 10.1016/j.cemconcomp.2017.07.016
71. Zhang Ch., Nerella V.N., Krishna A., Wang Sh., Zhang Y., Mechtcherine V. et al. Mix design concepts for 3D printable concrete : a review. Cement and Concrete Composites. 2021; 122:104155. DOI: 10.1016/j.cemconcomp.2021.104155
72. Inozemtcev A.S., Korolev E.V. High-strength lightweight concrete. St. Petersburg, St. Petersburg State University of Architecture and Civil Engineering, 2022; 192. EDN UCJRAZ. (rus.).
73. Inozemtcev A., Korolev E., Duong T.Q. Lightweight concrete for 3D printing with internal curing agent for Portland cement hydration. Magazine of Civil Engineering. 2022; 1(109):10915. DOI: 10.34910/MCE.109.15. EDN EPQPUI.
74. Korolev E.V., Thanh Qui Duong, Inozemtcev A.S. Method of internal care of cement hydration in 3D printing formulations. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2020; 15(6):834-846. DOI: 10.22227/1997-0935.2020.6.834-846 (rus.).
75. Inozemtcev A., Duong T.Q. Technical and economic efficiency of materials using 3D printing in construction on the example of high-strength lightweight fiber-reinforced concrete. E3S Web of Conferences. 2019; 02010. DOI: 10.1051/e3sconf/20199702010
76. Weng Y., Li M., Tan M.J., Qian S. Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model. Construction and Building Materials. 2018; 163:600-610. DOI: 10.1016/j.conbuildmat.2017.12.112
77. Mahaut F., Mokeddem S., Chateau X., Roussel N., Ovarlez G. Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cement and Concrete Research. 2008; 38(11):1276-1285. DOI: 10.1016/j.cemconres.2008.06.001
78. Toutou Z., Roussel N. Multi scale experimental study of concrete rheology: from water scale to gravel scale. Materials and Structures. 2006; 39(2):189-199. DOI: 10.1617/s11527-005-9047-y
79. Noor M.A., Uomoto T. Rheology of high flowing mortar and concrete. Materials and Structures. 2004; 37(272):513-521. DOI: 10.1617/13965
80. Wangler T., Lloret E., Reiter L., Hack N., Gramazio F., Kohler M. et al. Digital concrete: opportunities and challenges. RILEM Technical Letters. 2016; 1:67-75. DOI: 10.21809/rilemtechlett.2016.16
81. Weng Y., Lu B., Li M., Liu Z., Tan M.J., Qian S. Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. Construction and Building Materials. 2018; 189:676-685. DOI: 10.1016/j.conbuildmat.2018.09.039
82. Chen M., Li L., Zheng Y., Zhao P., Lu L., Cheng X. Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials. Construction and Building Materials. 2018; 189:601-611. DOI: 10.1016/j.conbuildmat.2018.09.037
83. Roussel N., Ovarlez G., Garrault S., Brumaud C. The origins of thixotropy of fresh cement pastes. Cement and Concrete Research. 2012; 42(1):148-157. DOI: 10.1016/j.cemconres.2011.09.004
84. Ma G., Li Y., Wang L., Zhang J., Li Z. Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers. Construction and Building Materials. 2020; 241:117982. DOI: 10.1016/j.conbuildmat.2019.117982
85. Wang L., Tian Z., Ma G., Zhang M. Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: Experiments and molecular dynamics studies. Cement and Concrete Composites. 2020; 110:103571. DOI: 10.1016/j.cemconcomp.2020.103571
86. Suiker A.S.J., Wolfs R.J.M., Lucas S.M., Salet T.A.M. Elastic buckling and plastic collapse during 3D concrete printing. Cement and Concrete Research. 2020; 135:106016. DOI: 10.1016/j.cemconres.2020.106016
87. Wolfs R.J.M., Bos F.P., Salet T.A.M. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing. Cement and Concrete Composites. 2019; 104:103344. DOI: 10.1016/j.cemconcomp.2019.103344
88. Chen Y., Figueiredo S.C., Li Z., Chang Z., Jansen K., Copuroglu O. et al. Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cement and Concrete Research. 2020; 132:106040. DOI: 10.1016/j.cemconres.2020.106040
89. Vaitkevicius V., Serelis E., Kersevicius V. Effect of ultra-sonic activation on early hydration process in 3D concrete printing technology. Construction and Building Materials. 2018; 169:354-363. DOI: 10.1016/j.conbuildmat.2018.03.007
90. Xiao J., Zou S., Yu Y., Wang Y., Ding T., Zhu Y. et al. 3D recycled mortar printing: System development, process design, material properties and on-site printing. Journal of Building Engineering. 2020; 32:101779. DOI: 10.1016/j.jobe.2020.101779
91. Perrot A., Rangeard D. 3D printing in concrete: techniques for extrusion/casting. 3D Printing of Concrete. Wiley & Sons Inc., Hoboken, NJ, USA, 2019; 41-72.
92. Bazhenov Yu.M. Modified high quality concretes. Moscow, ASV publisher, 2006; 368. EDN QNMNZZ. (rus.).
93. Lu B., Weng Y., Li M., Qian Y., Leong K.F., Tan M.J., et al. A systematical review of 3D printable cementitious materials. Construction and Building Materials. 2019; 207:477-490. DOI: 10.1016/j.conbuildmat.2019.02.144
94. Wangler T. Digital concrete: research and applications. Proceedings of the 10th International Concrete Congress. 2019; 35:2-12.
95. Al Rashid A., Khan S.A., Al-Ghamdi S.G., Koc M. Additive manufacturing: Technology, applications, markets, and opportunities for the built environment. Automation in Construction. 2020; 118:103268. DOI: 10.1016/j.autcon.2020.103268
96. Roussel N. A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cement and Concrete Research. 2006; 36:1797-1806. DOI: 10.1016/j.cemconres.2006.05.025
97. Panda B., Unluer C., Tan M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cement and Concrete Composites. 2018; 94:307-314. DOI: 10.1016/j.cemconcomp.2018.10.002
98. Panda B., Tan M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceramics International. 2018; 44:10258-10265. DOI: 10.1016/j.ceramint.2018.03.031
99. Rahul A.V., Santhanam M., Meena H., Ghani Z. 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites. 2019; 97:13-23. DOI: 10.1016/j.cemconcomp.2018.12.014
100. Nerella V., Nather M., Iqbal A., Butler M., Mechtcherine V.J.C. Inline quantification of extrudability of cementitious materials for digital construction. Cement and Concrete Composites. 2019; 95:260-270. DOI: 10.1016/j.cemconcomp.2018.09.015
101. Panda B., Mohamed N., Ahamed N., Paul S.C., Bhagath Singh G., Tan M.J. et al. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Materials. 2019; 12:2149. DOI: 10.3390/ma12132149
102. Chen M., Yang L., Zheng Y., Huang Y., Li L., Zhao P. et al. Yield stress and thixotropy control of 3D printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up. Construction and Building Materials. 2020; 252:119090. DOI: 10.1016/j.conbuildmat.2020.119090
103. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G., Thorpe T.J.M. Mix design and fresh properties for high-performance printing concrete. Materials and Structures. 2012; 45:1221-1232. DOI: 10.1617/s11527-012-9828-z
104. Zhang Y., Zhang Y., She W., Yang L., Liu G., Yang Y. Rheological and harden properties of the high-thixotropy 3D printing concrete. Construction and Building Materials. 2019; 201:278-285. DOI: 10.1016/j.conbuildmat.2018.12.061
105. Keita E., Bessaies-Bey H., Zuo W., Belin P., Roussel N. Weak bond strength between successive layers in extrusion-based additive manufacturing: Measurement and physical origin. Cement and Concrete Research. 2019; 123:105787. DOI: 10.1016/j.cemconres.2019.105787
106. Kruger J., Cho S., Zeranka S., Viljoen C., van Zijl G. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse. Composites Part B: Engineering. 2020; 183:107660. DOI: 10.1016/j.compositesb.2019.107660
107. Jolin M., Burns D., Bissonnette B., Gagnon F., Bolduc L.S. Understanding the pumability of concrete. Proceedings for the conference Shotcrete for Underground Support (XI). Davos, Switzerland, 2009.
108. Mechtcherine V., Nerella V.N., Kasten K. Testing pumpability of concrete using Sliding Pipe Rheometer. Construction and Building Materials. 2014; 53:312-323. DOI: 10.1016/j.conbuildmat.2013.11.037
109. Tay Y.W.D., Qian Y., Tan M.J. Printability region for 3D concrete printing using slump and slump flow test. Composites Part B: Engineering. 2019; 174:106968. DOI: 10.1016/j.compositesb.2019.106968
110. Thrane L.N., Pade C., Nielsen C.V. Determination of rheology of self-consolidating concrete using the 4C-Rheometer and how to make use of the results. Journal of ASTM International. 2009; 7(1):1-10. DOI: 10.1520/JAI102003
111. Mohan M.K., Rahul A.V., Van Tittelboom K., De Schutter G. Evaluating the influence of aggregate content on pumpability of 3D printable concrete. Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020; 333-341.
112. Mohan M.K., Rahul A.V., Van Tittelboom K., De Schutter G. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cement and Concrete Research. 2021; 139:106258. DOI: 10.1016/j.cemconres.2020.106258
113. Matthaus C., Back D., Weger D., Krankel T., Scheydt J., Gehlen C. Effect of cement type and limestone powder content on extrudability of lightweight concrete. Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020; 312-322.
114. Zhou C., Chen R., Xu J., Ding L., Luo H., Fan J. et al. In-situ construction method for lunar habitation: Chinese Super Mason. Automation in Construction. 2019; 104:66-79. DOI: 10.1016/j.autcon.2019.03.024
115. Burry J., Sabin J.E., Sheil B., Skavara M. Fabricate 2020. UCL Press, London, UK, 2020; 140.
116. Jeong H., Han S.-J., Choi S.-H., Lee Y.J., Yi S.T., Kim K.S. Rheological property criteria for buildable 3D printing concrete. Materials. 2019; 12:657. DOI: 10.3390/ma12040657
117. Panda B., Paul S.C., Mohamed N.A.N., Tay Y.W.D., Tan M.J. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement. 2018; 113:108-116. DOI: 10.1016/j.measurement.2017.08.051
118. Zareiyan B., Khoshnevis B. Interlayer adhesion and strength of structures in contour crafting — effects of aggregate size, extrusion rate, and layer thickness. Automation in Construction. 2017; 81:112-121. DOI: 10.1016/j.autcon.2017.06.013
119. Katzer J., Szatkiewicz T. Properties of concrete elements with 3D printed formworks which substitute steel reinforcement. Construction and Building Materials. 2019; 210:157-161. DOI: 10.1016/j.conbuildmat.2019.03.204
120. Salazar B., Aghdasi P., Williams I.D., Ostertag C.P., Taylor H.K. Polymer lattice-reinforcement for enhancing ductility of concrete. Materials & Design. 2020; 196:109184. DOI: 10.1016/j.matdes.2020.109184
121. Sanjayan J.G., Nematollahi B., Xia M., Marchment T. Effect of surface moisture on inter-layer strength of 3D printed concrete. Construction and Building Materials. 2018; 172:468-475. DOI: 10.1016/j.conbuildmat.2018.03.232
122. Van Der Putten J., Deprez M., Cnudde V., De Schutter G., Van Tittelboom K. Microstructural characterization of 3D printed cementitious materials. Materials. 2019; 12:2993. DOI: 10.3390/ma12182993
123. Van Der Putten J., De Schutter G., Van Tittelboom K. Surface modification as a technique to improve inter-layer bonding strength in 3D printed cementitious materials. RILEM Technical Letters. 2019; 4:33-38.
124. Ma G., Li Z., Wang L., Wang F., Sanjayan J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials. 2019; 202:770-783. DOI: 10.1016/j.conbuildmat.2019.01.008
125. Ogura H., Nerella V.N., Mechtcherine V. Developing and testing of strain-hardening cement-based composites (SHCC) in the context of 3D printing. Materials. 2018; 11:1375. DOI: 10.3390/ma11081375
126. Farina I., Fabbrocino F., Carpentieri G., Modano M., Amendola A., Goodall R. et al. On the reinforcement of cement mortars through 3D printed polymeric and metallic fibers. Composites Part B: Engineering. 2016; 90:76-85. DOI: 10.1016/j.compositesb.2015.12.006
127. Rubio M., Sonebi M., Amziane S. Fresh and rheological properties of 3D printing bio-cement-based materials. Academic Journal of Civil Engineering. 2017; 35:283-290.
128. Bos F.P., Ahmed Z.Y., Wolfs R.J., Salet T.A. 3D printing concrete with reinforcement. High Tech Concrete: Where Technology and Engineering Meet. 2018; 2484-2493.
129. Bos F.P., Ahmed Z.Y., Jutinov E.R., Salet T.A.M. Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials. 2017; 10:1314. DOI: 10.3390/ma10111314
130. Mechtcherine V., Michael A., Liebscher M., Schmeier T. Extrusion-based additive manufacturing with carbon reinforced concrete: concept and feasibility study. Materials. 2020; 13:2568. DOI: 10.3390/ma13112568
131. Bos F., Dezaire S., Ahmed Z., Hoekstra A., Salet T. Bond of reinforcement cable in 3D printed concrete. Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020; 584-600.
132. Bester F., van den Heever M., Kruger J., Cho S., van Zijl G. Steel fiber links in 3D printed concrete. Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020; 398-406.
133. Geneidy O., Kumarji S., Dubor A., Sollaz-zo A. Simultaneous reinforcement of concrete while 3D printing. Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020; 895-905.
134. Marchment T., Sanjayan J. Penetration reinforcing method for 3D concrete printing. Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020; 680-690.
135. Marchment T., Sanjayan J. Mesh reinforcing method for 3D concrete printing. Automation in Construction. 2020; 109:102992. DOI: 10.1016/j.autcon.2019.102992
136. Wang W., Konstantinidis N., Austin S.A., Buswell R.A., Cavalaro S., Cecinia D. Flexural behaviour of AR-glass textile reinforced 3D printed concrete beams. Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020; 728-737.
137. Lin A., Tan Y.K., Wang C.-H., Kua H.W., Taylor H. Utilization of waste materials in a novel mortar–polymer laminar composite to be applied in construction 3D printing. Composite Structures. 2020; 253:112764. DOI: 10.1016/j.compstruct.2020.112764
138. Mechtcherine V., Grafe J., Nerella V.N., Spaniol E., Hertel M., Fussel U. 3D printed steel reinforcement for digital concrete construction — Manufacture, mechanical properties and bond behavior. Construction and Building Materials. 2018; 179:125-137. DOI: 10.1016/j.conbuildmat.2018.05.202
139. Regulation and Permitting for 3D Printed Construction — Automate Construction. URL: https://automate.construction/2020/03/29/regulation-and-permitting-for-3d-printed-construction
140. ICON — 3D Technology. ICON develops advanced construction technologies that advance humanity by using 3D printing robotics, software and advanced materials. URL: https://www.iconbuild.com
141. Apis Cor. We print buildings. URL: https://apis-cor.com
142. COBOD. COBOD is the world leader in 3D construction printing solutions. We are continuously adding wider automation and robotics to construction. 2023. URL: https://cobod.com
Review
For citations:
Inozemtcev A.S. Modern theory and practice of concrete technology for 3D printing in construction. Vestnik MGSU. 2024;19(2):216-245. (In Russ.) https://doi.org/10.22227/1997-0935.2024.2.216-245