Preview

Vestnik MGSU

Advanced search

Formula for two-sided estimation of the fundamental frequency of oscillations of a lattice truss

https://doi.org/10.22227/1997-0935.2024.3.377-386

Abstract

Introduction. One of the main tasks of the theory of oscillations of building structures is the determination of the fundamental frequency of natural oscillations. Analytical solutions are rare here and, as a rule, are based on approximate estimates of the first frequency from above (Rayleigh’s method) or from below (Dunkerley’s estimate). Most often, the problem of natural oscillations is solved numerically by the finite element method using specialized packages. In this paper, the task is to derive analytical estimates of the dependence of the first oscillation frequency of a lattice truss on the number of panels, the geometric characteristics of the structure, and the parameters of the elastic properties of the material.

Materials and methods. A flat statically determinable lattice is supported by its base on struts. The angular support is a fixed joint. Calculation of forces in structural elements is performed by cutting out nodes using standard operators of the Maple symbolic mathematics system. The rigidity of the truss is found by the Maxwell – Mohr formula. The mass of the truss is distributed uniformly over its nodes. Mass oscillations occur vertically. By generalizing a series of solutions for trusses with a successively increasing order to an arbitrary number of panels, the desired formulas are derived by induction.

Results. A case of kinematic variability of the proposed truss scheme was noticed. Formulas for the first frequency are obtained by the Dunkerley and Rayleigh method. The two analytical solutions are compared with the numerical solution obtained for the entire frequency spectrum. Spectral constants and resonant safety regions were discovered in the spectra of a family of regular trusses.

Conclusions. The two-sided method for estimating the first frequency is applicable to solving problems on regular constructions, where the final formula includes the order of regularity as a parameter. For the construction under consideration, the error of the Rayleigh method is comparable to the error of the Dunkerley method.

About the Author

M. N. Kirsanov
National Research University “Moscow Power Engineering Institute” (MPEI)
Russian Federation

Mikhail N. Kirsanov — Doctor of Physical and Mathematical Sciences, Professor of the Department of Robotics, Mechatronics, Dynamics and Strength of Machines

14 Krasnokazarmennaya st., Moscow, 111250

Scopus: 16412815600, ResearcherID: H-9967-2013, Google Scholar: FfoNGFwAAAAJ, IstinaResearcherID: 2939132



References

1. Klepov M.V., Ivanov S.Yu. Accounting for vibration damping under dynamic loads in the PC “Lira”. Review-competition of scientific, design and technological works of students of the Volgograd State Technical University. 2019; 393-394. EDN XPKWLG. (rus.).

2. Bryantsev A.A. Variant design of trusses using the LIRA-SAPR program. Bulletin of KazGASA. 2020; 3:77. (rus.).

3. Ignatiev V.A., Ignatiev A.V. Finite element method in the form of the classical mixed method of structural mechanics (theory, mathematical models and algorithms). Moscow, ASV Publishing House, 2022; 306. (rus.).

4. Kanatova M. Frequency equation and vibration analysis of a flat beam truss. Trends in Applied Mechanics and Mechatronics. 2015; 31-34. EDN ZBBKPJ. (rus.).

5. Petrichenko E.A. Lower bound of the natural oscillation frequency of the Fink truss. Structural Mechanics and Structures. 2020; 3(26):21-29. EDN PINHFN. (rus.).

6. Sud I.B. Derivation of formulas for deflection of the girder truss with an arbitrary number of panels in the maple system. Structural Mechanics and Structures. 2020; 2(25):25-32. EDN VIOBNE. (rus.).

7. Chalecki M. The algorithm for calculation of displacements in flat frame constructions. Mechanics. Scientific Research and Educational and Methodological Developments. 2013; 7:237-252. EDN XXEBKX. (rus.).

8. Komerzan E.V., Lushnov N.A., Osipova T.S. Analytical calculation of the deflection of a planar truss with an arbitrary number of panels. Structural Mechanics and Structures. 2022; 2(33):17-25. DOI: 10.36622/VSTU.2022.33.2.002. EDN NTJXAL. (rus.).

9. Manukalo A.S. Analysis of a planar Sprengel truss first frequency natural oscillations value. Structural Mechanics and Structures. 2023; 2(37):54-60. DOI: 10.36622/VSTU.2023.37.2.006. EDN UXEELW.(rus.).

10. Komerzan E.V., Maslov A.N. Estimation of the l-shaped spatial truss fundamental frequency oscillations. Structural Mechanics and Structures. 2023; 2(37):35-45. DOI: 10.36622/VSTU.2023.37.2.004. EDN UGWBIP. (rus.).

11. Komerzan E.V., Maslov A.N. Analytical evaluation of a regular truss natural oscillations fundamental frequency. Structural Mechanics and Structures. 2023; 2(37):17-26. DOI: 10.36622/VSTU.2023.37.2.002.EDN GMNMJQ. (rus.).

12. Hutchinson R.G., Fleck N.A. Microarchitectured cellular solids — the hunt for statically determinate periodic trusses. ZAMM — Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2005; 85(9):607-617. DOI: 10.1002/zamm.200410208

13. Hutchinson R.G., Fleck N.A. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids. 2006; 54(4):756-782. DOI: 10.1016/j.jmps.2005.10.008

14. Kaveh A. Optimal analysis of structures by concepts of symmetry and regularity. Springer Vienna, 2013. DOI: 10.1007/978-3-7091-1565-7

15. Tinkov D.V. Comparative analysis of analytical solutions to the problem of truss structure deflection. Magazine of Civil Engineering. 2015; 5(57):66-73. DOI: 10.5862/MCE.57.6. EDN UHLIHV. (rus.).

16. Galishnikova V.V., Ignatiev V.A. Regular rod systems: theory and calculation methods. Volgograd, VolgGASU, 2006. EDN QNMMHT. (rus.).

17. Melyokhin E.A. Analysis of the stress-strain state of the spanning trihedral truss under linear loads. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(4):556-571. DOI: 10.22227/1997-0935.2023.4.556-571. EDN ZAYUKQ. (rus.).

18. Petrenko V.F. Estimation of the natural frequency of a two-span truss, taking into account the support stiffeness. Structural Mechanics and Structures. 2021; 4(31):16-25. DOI: 10.36622/VSTU.2021.31.4.002. EDN: QJZZJK. (rus.).

19. Saglik H., Balkaya C., Chen A., Ma R., Doran B. Development of natural frequency in multi-span composite bridges with variable cross-section: Analytical and numerical solutions. Structures. 2022; 45:1657-1666. DOI: 10.1016/j.istruc.2022.09.082

20. Buka-Vaivade K., Kirsanov M.N., Serdjuks D.O. Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2020; 15(4):510-517. URL: https://www.elibrary.ru/item.asp?id=42777640 DOI: 10.22227/1997-0935.2020.4.510-517

21. Kirsanov M.N. Kinematic analysis and estimation of the frequency of natural oscillations of a planar lattice. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2022; 17(10):1324-1330. URL: https://www.elibrary.ru/item.asp?id=50118989 DOI: 10.22227/1997-0935.2022.10.1324-1330 (rus.).

22. Kirsanov M.N. Planar trusses. Schemes and calculation formulas : handbook. Moscow, INFRA-M, 2019; 238. (rus.).

23. Low K.H. A modified Dunkerley formula for eigenfrequencies of beams carrying concentrated masses. International Journal of Mechanical Sciences. 2000; 42(7):1287-1305. DOI: 10.1016/s0020-7403(99)00049-1

24. Kirsanov M., Ivanitskii A. Bilateral analytical estimation of the natural oscillation frequency of a planar triangular truss. AlfaBuild. 2023; 26:2601. DOI: 10.57728/ALF.26.1

25. Kirsanov M. Simplified Dunkerley method for estimating the first oscillation frequency of a regular truss. Construction of Unique Buildings and Structures. 2023; 108:10801. DOI: 10.4123/CUBS.108.1


Review

For citations:


Kirsanov M.N. Formula for two-sided estimation of the fundamental frequency of oscillations of a lattice truss. Vestnik MGSU. 2024;19(3):377-386. (In Russ.) https://doi.org/10.22227/1997-0935.2024.3.377-386

Views: 180


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)