Review and comparative analysis of strength criteria for modelling non-linear behaviour of concrete
https://doi.org/10.22227/1997-0935.2024.6.857-877
Abstract
Introduction. In recent decades, numerical methods for calculating concrete and reinforced concrete structures have developed significantly, taking into account the physically nonlinear behavior of the material. Such methods, in comparison with analytical ones, make it possible to describe the work of the material more accurately and reflect the main features of its stress–strain state. This makes it possible to perform more cost-effective and, in some cases, more reliable design solutions. Concept of the limit surface plays an important role in numerical methods. Limit surface, which is expressed by a condition (strength criterion), separates the elastic and plastic region of the material. Strength criteria must correspond to experimental data, provide a mathematically stable unique solution, and also have a set of parameters that can be easily determined from empirically based expressions or test data. The history of creation and improvement of concrete limit surfaces includes dozens of domestic and foreign works, many of which do not meet these requirements. The purpose of the current work is a comparative analysis of the most common strength criteria of concrete.
Materials and methods. This study is based on the analytical generalization and systematization of the data received form domestic and foreign sources.
Results. A detailed analysis of the most common domestic and foreign concrete limit surfaces was carried out.
Conclusions. According to the analysis results, the comparison of the concrete limit surfaces was performed.
About the Authors
G. I. RempelRussian Federation
Georgy I. Rempel — chief specialist of the Structural analysis department
2 Volokolamskoe shosse, Moscow, 125993
A. M. Budarin
Russian Federation
Alexander M. Budarin — chief specialist of the Structural analysis department
2 Volokolamskoe shosse, Moscow, 125993
A. P. Dolgikh
Russian Federation
Andrey P. Dolgikh — head of structural analysis department
2 Volokolamskoe shosse, Moscow, 125993
A. A. Kamzolkin
Russian Federation
Alexey A. Kamzolkin — lead engineer
18 3rd Yamskogo Polya st., Moscow, 125124
V. N. Alekhin
Russian Federation
Vladimir N. Alekhin — Candidate of Technical Sciences, Associate Professor, Head of the Department of Computer-Aided Design Systems for Construction Projects
19 Mira st., Yekaterinburg, 620002
RISC AuthorID: 549888, Scopus: 7004307891, ResearcherID: B-4747-2016
References
1. Staber B., Forest S., Kotob M., Mazière M., Rose T. Loss of ellipticity analysis in non-smooth plasticity. International Journal of Solids and Structures. 2021; 222-223:111010. DOI: 10.1016/j.ijsolstr.2021.02.021
2. Korsun V.I., Karpenko S.N., Makarenko S.Yu., Nedoresov A.V. Modern strength criteria for concrete under triaxial stress states. Building and Reconstruction. 2021; 5(97):16-30. DOI: 10.33979/2073-7416-2021-97-5-16-30. EDN HYNCLS. (rus.).
3. Chen W.F. Plasticity in Reinforced Concrete. New York, J. Ross Publishing Classics, 2007; 474.
4. Jirásek M., Bažant Z.P. Inelastic Analysis of Structures. Chichester, Wiley, 2002; 722.
5. Willam K.J., Warnke E.P. Constitutive model for the triaxial behavior of concrete. IABSE. 1974; 1-31.
6. Lim J.C., Ozbakkaloglu T., Gholampour A., Bennett T., Sadeghi R. Finite-Element Modeling of Actively Confined Normal-Strength and High-Strength Concrete under Uniaxial, Biaxial, and Triaxial Compression. Journal of Structural Engineering. 2016; 142(11). DOI: 10.1061/(asce)st.1943-541x.0001589
7. Ansari F., Li Q.B. High-strength concrete subjected to triaxial compression. ACI Materials Journal. 1998; 95(6). DOI: 10.14359/420
8. Bellamy C.J. Strength of concrete under combined stress. ACI Journal Proceedings. 1961; 58(10). DOI: 10.14359/7989
9. Bellotti R., Ronzoni E. Results of tests carried out on cylindrical concrete specimens subjected to complex stress states : a critical analysis. Proceedings of International Conference on Concrete under Multiaxial Condition. 1984.
10. Bellotti R., Rossi P. Cylinder tests: Experimental technique and results. Materials and Structures. 1991; 24(1):45-51. DOI: 10.1007/bf02472681
11. Candappa D.C., Sanjayan J.G., Setunge S. Complete triaxial stress-strain curves of high-strength concrete. Journal of Materials in Civil Engineering. 2001; 13(3):209-215. DOI: 10.1061/(asce)0899-1561(2001)13:3(209)
12. Candappa D.P., Setunge S., Sanjayan J.G. Stress versus strain relationship of high strength concrete under high lateral confinement. Cement and Concrete Research. 1999; 29(12):1977-1982. DOI: 10.1016/s0008-8846(99)00219-7
13. Chern J.C., Yang H.J., Chen H.W. Behavior of steel fiber reinforced concrete in multiaxial loading. ACI Materials Journal. 1993; 89(1). DOI: 10.14359/1242
14. Cordon W.A., Gillespie H.A. Variables in concrete aggregates and portland cement paste which influence the strength of concrete. ACI Journal Proceedings. 1963; 60(8). DOI: 10.14359/7889
15. Duke C.M., Davis H.E. Some properties of concrete under sustained combined stresses. Proceedings-American society for testing and materials. 1944; 44:888-896.
16. Farnam Y., Moosavi M., Shekarchi M., Babanajad S.K., Bagherzadeh A. Behaviour of slurry infiltrated fibre concrete (SIFCON) under triaxial compression. Cement and Concrete Research. 2010; 40(11):1571-1581. DOI: 10.1016/j.cemconres.2010.06.009
17. Gabet T., Malecot Y., Daudeville L. Triaxial behaviour of concrete under high stresses: Influence of the loading path on compaction and limit states. Cement and Concrete Research. 2008; 38(3):403-412. DOI: 10.1016/j.cemconres.2007.09.029
18. Imran I., Pantazopoulou S.J. Experimental study of plain concrete under triaxial stress. ACI Materials Journal. 1996; 93(6). DOI: 10.14359/9865
19. Kotsovos M.D. Effect of stress path on the behavior of concrete under triaxial stress states. ACI Journal Proceedings. 1979; 76(2). DOI: 10.14359/6944.
20. Wang C.Z., Guo Z.H., Zhang X.Q. Experimental investigation of biaxial and triaxial compressive concrete strength. ACI Materials Journal. 1987; 84(2). DOI: 10.14359/1808.
21. Launay P., Gachon H. Strain and ultimate strength of concrete under triaxial stress. ACI Materials Journal. 1972; 23-34.
22. Sfer D., Carol I., Gettu R., Etse G. Study of the behavior of concrete under triaxial compression. Journal of Engineering Mechanics. 2002; 128(2):156-163. DOI: 10.1061/(asce)0733-9399(2002)128:2(156)
23. Smith S.S., Willam K.J., Gerstle K.H., Sture S. Concrete over the top – or, is there life after peak? ACI Materials Journal. 1989; 86(5). DOI: 10.14359/2089.
24. Kupfer H., Gerstle K.H. Behavior of concrete under biaxial stresses. Journal of the Engineering Mechanics Division. 1969; 99(4):853-866. DOI: 10.1061/jmcea3.0001789
25. Nelissen L. Biaxial testing of normal concrete. Heron. 1972; 18(1):1-90.
26. Van Mier J.G.M. Strain-softening of concrete under multiaxial loading conditions : Ph.D. Thesis. Eindhoven, Technische Hogeschool Eindhoven, 1984.
27. Mises R.V. Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen (Mathematisch-physikalische Klasse). 1913; 1:582-592.
28. Rankine W. On the stability of loose earth. Philosophical Transactions of the Royal Society of London. 1857; 147:9-27. DOI: 10.1098/rstl.1857.0003
29. Geniev G., Kissuk V., Tupin G. Theory of plasticity of concrete and reinforced concrete. Moscow, Stroyizdat, 1974; 316. EDN RSNPAX. (rus.).
30. Geniev G. A variant of the strength condition. Theoretical research in the field of structural mechanics of spatial systems. 1976; 21-27. (rus.).
31. Leites E.S. To improvement one from conditions of concrete strength. Behavior of concrete and elements of reinforced concrete structures under exposure of various durations : collection of scientific papers. 1980; 37-40. (rus.).
32. Yashin A.V. Strength criteria and straining of concrete under simple loading for different stress pattern. Calculation and design of reinforced concrete structures. 1977; 48-57. (rus.).
33. Bresler B., Pister K.S. Strength of concrete under combined stresses. ACI Journal Proceedings. 1958; 55(9). DOI: 10.14359/11358
34. Leon A. Über die Scherfestigkeit des Betons. Beton und Eisen. 1935; 34:130-135.
35. Bigoni D., Piccolroaz A. Yield criteria for quasibrittle and frictional materials. International Journal of Solids and Structures. 2004; 41(11-12):2855-2878. DOI: 10.1016/j.ijsolstr.2003.12.024
36. Poltronieri F., Piccolroaz A., Bigoni D., Romero Baivier S. A simple and robust elastoplastic constitutive model for concrete. Engineering Structures. 2014; 60:81-84. DOI: 10.1016/j.engstruct.2013.12.007
37. Soloviev L.Yu. Non-linear concrete model based on the plastic flow theory. Systems. Methods. Technologies. 2014; 4(24):131-140. EDN TFBEMN. (rus.).
38. Petrov A.N. Deformation model of creep of reinforced concrete and its application to the calculation of plane-stressed elements and systems of them : Ph.D. Thesis. Moscow, NIIZhB, 2001; 326. (rus.).
39. Karpenko N.I. General Models of the Reinforced Concrete Mechanics. Moscow, Stroyizdat Publ., 1996; 416. (rus.).
40. Karpenko N.I., Karpenko S.N. For the definition of strength of plain concrete in triaxial stress states. Concrete and reinforced concrete — a look into the future: scientific proceedings of the III All-Russian (II International) Conference on Concrete and Reinforced Concrete. 2014; 156-165. EDN TRROFR. (rus.).
41. Klovanich S.F., Bezushko D.I. Numerical experiment based on investigation of deformation plasticity theory of concrete. Bulletin of the Odessa State Academy of Civil Engineering and Architecture. 2006; 22:122-130. (rus.).
42. Ottosen N.S. A Failure Criterion for Concrete. Journal of the Engineering Mechanics Division. 1977; 103(4):527-535. DOI: 10.1061/jmcea3.0002248
43. Beverly P. FIB model code for concrete structures 2010. 2013.
44. Menetrey P., Willam K.J. Triaxial failure criterion for concrete and its generalization. ACI Structural Journal. 1995; 92(3). DOI: 10.14359/1132
45. Grassl P., Jirásek M. Damage-plastic model for concrete failure. International Journal of Solids and Structures. 2006; 43(22-23):7166-7196. DOI: 10.1016/j.ijsolstr.2006.06.032
46. Budarin A.M., Rempel G.I., Kamzolkyn A.A., Alekhin V.N. Stress-strain concrete model with double independent reinforcement. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(4):517-532. DOI: 10.22227/1997-0935.2023.4.517-532 (rus.).
47. Hsieh S.S., Ting E.C., Chen W.F. A plastic-fracture model for concrete. International Journal of Solids and Structures. 1982; 18(3):181-197. DOI: 10.1016/0020-7683(82)90001-4
Review
For citations:
Rempel G.I., Budarin A.M., Dolgikh A.P., Kamzolkin A.A., Alekhin V.N. Review and comparative analysis of strength criteria for modelling non-linear behaviour of concrete. Vestnik MGSU. 2024;19(6):857-877. (In Russ.) https://doi.org/10.22227/1997-0935.2024.6.857-877