Preview

Vestnik MGSU

Advanced search

Method of reliability coefficients with adjustable values for steel structures design

https://doi.org/10.22227/1997-0935.2024.9.1444-1453

Abstract

Introduction. The method of reliability coefficients with fixed values (declared in regulatory documents) is used as a basic method of limit state verification. However, there is a more general formulation of the semi-probabilistic method, within which the specificity of the design (e.g. information on the variability of actual dimensions, material properties, etc.) and the specificity of the location (e.g. information about climatic loads) can be taken into account more accurately. This method is referred to as the modified (adjustable) partial factor method.

Materials and methods. The paper is aimed at the development of the method of reliability coefficients with adjustable values for the design of steel structures and the scientific justification of the parameters of this method. The methodological formulation of this method is based on determining the design values of the basic variables based on the distribution function for a given quantile. In this case, the quantile of the distribution is calculated using the sensitivity coefficients of the basic variables of the first-order reliability method and the target value of the reliability index.

Results. The study describes in a general formulation a method of reliability coefficients with adjustable values for the design of steel structures, which allows explicitly taking into account the target reliability level and variability of the basic variables. In the course of the study, the scientific substantiation of the sensitivity coefficients of the basic variables based on the first-order reliability method was performed and instructions on the purpose of probabilistic models of random variables were presented.

Conclusions. The analysis of the generalized function of the limiting state of the steel element by the probabilistic method showed that the sensitivity coefficients change significantly with the change in the loading parameter (characterizing the ratio of variable loads to the total), while it changes slightly depending on the type of variable load itself. Sensitivity coefficients can be assumed based on graphs or simplified dependencies presented in this study. Conservatively, the sensitivity coefficient values for the bearing capacity of the steel element can be assumed to be 0.6, for constant loading –0.4 and for variable loading –0.9.

About the Author

V. V. Nadolski
Brest State Technical University (BrSTU); Belarusian National Technical University (BNTU)
Belarus

Vitali V. Nadolski — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Building Production Technologies; Associate Professor of the Department of Building Structures

267 Moskovskaya st., Brest, 224017;
65 Independence avenue, Minsk, 220013

RSCI AuthorID: 859575, Scopus: 56153169800



References

1. Streletskiy N.S. Fundamentals of statistical accounting of the safety factor of structures. Moscow, Stroyizdat Publ., 1947; 95. (rus.).

2. Baldin V.A., Gol’denblat I. I., Kochenov V.I., Pil’-dish M.Ya., Tal’ K.E. Calculation of building structures by limit states. Moscow, Gosstroyizdat Publ., 1951; 272. (rus.).

3. Novak L., Cervenka J., Cervenka V., Novák D., Sýkora M. Comparison of advanced semi-probabilistic methods for design and assessment of concrete structures. Structural Concrete. 2022; 24(1):771-787. DOI: 10.1002/suco.202200179

4. Nadolski V., Holicky M., Sykora M., Tur V. Comparison of approaches to reliability verification of existing steel structures. Budownictwo i Architektura. 2022; 21(4):13-24. DOI: 10.35784/bud-arch.3022

5. Novák L., Novák D. Semi-probabilistic assessment of existing bridge using simplified methods for estimation of variance. Acta Polytechnica CTU Proceedings. 2022; 36:142-148. DOI: 10.14311/APP.2022.36.0142

6. Lenner R., Sýkora M. Partial factors for imposed loads in areas for storage and industrial use. Structure and Infrastructure Engineering. 2017; 13(11):1425-1436. DOI: 10.1080/15732479.2017.1285328

7. Caspeele R., Sykora M., Allaix D.L., Steenbergen R. The design value method and adjusted partial factor approach for existing structures. Structural Engineering International. 2013; 23(4):386-393. DOI: 10.2749/101686613x13627347100194

8. Zhang Y., Toutlemonde F. Calibrating partial safety factors in line with required reliability levels for concrete structures. European Journal of Environmental and Civil Engineering. 2022; 26(9):3863-3879. DOI: 10.1080/19648189.2020.1824820

9. Lara C., Tanner P., Zanuy C., Hingorani R. Reliability verification of existing rc structures using partial factors approaches and site-specific data. Applied Scien-ces. 2021; 11(4):1653. DOI: 10.3390/app11041653

10. Ebrahim Z.A., Abdel-jawad Y.A. A modified semi-probabilistic approach for the assessment of the residual service life of reinforced concrete structures subjected to carbonation. Procedia Manufacturing. 2020; 44:148-155. DOI: 10.1016/j.promfg.2020.02.216

11. Orcesi A., Diamantidis D., O’Connor A., Palmisano F., Sykora M., Boros V. et al. Investigating partial factors for the assessment of existing reinforced concrete bridges. Structural Engineering International. 2023; 34(1):55-70. DOI: 10.1080/10168664.2023.2204115

12. Marková J., Holický M., Jung K., Sýkora M. Reliability of existing reinforced concrete slabs exposed to punching shear. Acta Polytechnica CTU Proceedings. 2022; 36:119-126. DOI: 10.14311/APP.2022.36.0119

13. Holicky M. Safety design of lightweight roofs exposed to snow load. WIT Transactions on Engineering Sciences, Vol 58. 2007; (I):51-57. DOI: 10.2495/en070061

14. Sýkora M., Holicky M. Reliability-based design of roofs exposed to a snow load. Reliability Engineering — Proceedings of the International Workshop on Reliability Engineering and Risk Management IWRERM 2008. Shanghai, Tongji University Press, 2009; 183-188.

15. Nadolski V., Rózsás Á., Sykora M. Calibrating partial factors — methodology, input data and case study of steel structures. Periodica Polytechnica Civil Engineering. 2019. DOI: 10.3311/PPci.12822

16. Shpete G. Reliability of load-bearing building structures. Moscow, Stroyizdat Publ., 1994; 287. (rus.).

17. Koteš P., Prokop J., Strieška M., Vičan J. Calibration of partial safety factors according to Eurocodes. MATEC Web of Conferences. 2017; 117:00088. DOI: 10.1051/matecconf/201711700088

18. Hyman P., Sriramula S., Osofero A.I. Calibration of safety factors for prestressed stayed steel columns. Architecture, Structures and Construction. 2022; 2(3):365-380. DOI: 10.1007/s44150-022-00066-5

19. Holický M., Retief J.V., Sýkora M. Assessment of model uncertainties for structural resistance. Probabilistic Engineering Mechanics. 2016; 45:188-197. DOI: 10.1016/j.probengmech.2015.09.008

20. Lychev A.S. Reliability of building structures. Moscow, ASV Publishing House, 2008; 184. EDN QNNCVJ. (rus.).

21. Vedyakov I.I. Modern principles of rationing the quality of materials and steel structures. Construction Mechanics and Calculation of Structures. 2007; 2(211):62-64. EDN ZVYHQV. (rus.).

22. Tur V., Nadolski V. Belarusian national annex to Eurocode 3: basic variables formulation for the partial factors calibration. Modern Engineering. 2016; 1:63-72.

23. Tur V., Nadolski V. The partial factor values calibration for the ultimate limit state checking of steel structures for the conditions republic of Belarus. Part 1. Building and Reconstruction. 2016; 4(66):73-84. EDN WJIFTB. (rus.).

24. Tur V.V., Nadolsky V.V., Chernoivan A.V. Probabilistic models of wind influence for climatic conditions of republic of Belarus. Bulletin of BrSTU. Construction and Architecture. 2017; 1(103):65-71. EDN BDFIGH. (rus.).

25. Sanpaolesi L., Del Corso R., Formichi P. et al. Phase 1 Final Report to the European Commission, Scientific Support Activity in the Field of Structural Stability of Civil Engineering Works: Snow Loads. Department of Structural Engineering, University of Pisa, 1998.

26. Sanpaolesi L., Del Corso R., Formichi P. et al. Phase 2 Final Report to the European Commission, Scientific Support Activity in the Field of Structural Stability of Civil Engineering Works: Snow Loads. Department of Structural Engineering, University of Pisa, 1999.

27. Martynov I., Nadolski V. The statistical parameters of basic variables in the resistance model of steel element. Architecture and Building Sciences. 2014; 1-2(18-19):39-41. EDN NPNGOE. (rus.).

28. Nadolski V., Sykora M. Uncertainty in resistance models for steel members. Transactions of the VŠB — Technical University of Ostrava, Civil Engineering Series. 2014; 14(2):26-37. DOI: 10.2478/tvsb-2014-0028

29. Nadolski V.V. Reliability of a steel member in case of loss of local stability of a web. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2022; 17(5):569-579. DOI: 10.22227/1997-0935.2022.5.569-579. EDN BJZUCE. (rus.).

30. Nadolski V.V. Statistical characteristics of the numerical model uncertainties for steel elements. Building and Reconstruction. 2023; 3(107):17-34. DOI: 10.33979/2073-7416-2023-107-3-17-34. EDN TNLEVH. (rus.).

31. Gulvanessian H., Holicki M. Reliability based calibration of Eurocodes considering a steel member. JCSS Workshop on Reliability Based Code Calibration. 2002.

32. Sýkora M., Holický M. Verification of existing reinforced concrete structures using the design value method. Proceedings of the 3th International Symposium on Life-Cycle Civil Engineering. 2012; 821-828.


Review

For citations:


Nadolski V.V. Method of reliability coefficients with adjustable values for steel structures design. Vestnik MGSU. 2024;19(9):1444-1453. (In Russ.) https://doi.org/10.22227/1997-0935.2024.9.1444-1453

Views: 1800


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)