Sanitary and hygienic issues in the design of individual heat supply systems
https://doi.org/10.22227/1997-0935.2024.10.1651-1665
Abstract
Introduction. In the case of individual construction, the existing design standards for district heating systems are of a reference nature. The owner of the household determines how much hot water he needs, what the temperature in the room should be. It is important that fire safety, environmental standards, sanitary standards and standards of energy allocated per household are not violated. The parameters of HWS are quantitative. There are questions about the quality of sanitary water that has contact with human skin. There are engineering solutions that can eliminate or significantly reduce these risks. It is advisable to apply these engineering solutions at the design stage.
Materials and methods. Based on the generalization of data from scientific sources and published cases of mass diseases, the main types of pathogenic bacteria occurring in individual water and heat supply systems were identified. These are Legionella and Pseudomonas aeruginosa. The thresholds and conditions of viability of these bacteria are considered. The main causes that cause the risks of growth of pathogenic bacteria are classified.
Results. Requirements of observance of complex technical measures at designing consist in necessity of selection of the equipment of systems of individual heat supply at observance of conditions of control of water intake, maintenance of preliminary heating of water up to temperature 65 °С in systems of accumulation type, constant circulation of water in circuits of water supply, use of flowing water heaters, selection of pipes.
Conclusions. The use of technical solutions for heat supply systems of individual construction facilities can significantly reduce or completely eliminate the risks associated with the possibility of pathogenic bacteria and diseases of people living in households.
Keywords
About the Author
A. L. ToropovRussian Federation
Alexey L. Toropov — Candidate of Technical Sciences, General Director — Chief Designer
13 Schelkovskoe shosse, Moscow, 105122
RSCI AuthorID: 1030472, Scopus: 58406665800
References
1. Kanarek P., Bogiel T., Breza-Boruta B. Legionellosis risk — an overview of Legionella spp. habitats in Europe. Environmental Science and Pollution Research. 2022; 29(51):76532-76542. DOI: 10.1007/s11356-022-22950-9
2. Campese C., Roche D., Clément C., Fierobe F., Jarraud S., de Waelle P. et al. Cluster of Legionnaires’ disease associated with a public whirlpool spa. Euro Surveill. 2010; 15(26):19602.
3. Coetzee N., Duggal H., Hawker J., Ibbotson S., Harrison T.G., Phin N. et al. An outbreak of Legionnaires’ disease associated with a display spa pool in retail premises. Euro Surveill. 2012; 17(37):20271.
4. Onishеhcnko G.C., Lazikova G.F., Chistyakova G.G., Demina Yu.V., Nikonov B.I., Romanеnko V.V. et al. Epidemiologic characteristic of legionnaires’ disease outbreak in town Verkhnyaya Pyshma. Journal of Microbiology, Epidemiology and Immunobiology. 2008; 2:82-85. EDN JSBTCF. (rus.).
5. Gruzdeva O.A. Scientific and methodological framework for prevention of legionellosis in the hotel complexes. Epidemiology and Vaccinal Prevention. 2014; 2(75):49-53. EDN SBEUMJ. (rus.).
6. Van der Kooij D., Veenendaal H.R., Scheffer W. Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Research. 2005; 39(13):2789-2798. DOI: 10.1016/j.watres.2005.04.075
7. Percival S.L., Williams D.W., Gray N.F., Yates M.V., Chalmers R.M. Microbiology of Waterborne Diseases. Academic Press, Elsevier ltd., 2014; 695. DOI: 10.1016/C2010-0-67101-X
8. Baron J.L., Peters T., Shafer R., MacMurray B., Stout J.E. Field evaluation of a new point-of-use faucet filter for preventing exposure to Legionella and other waterborne pathogens in health care facilities. American Journal of Infection Control. 2014; 42(11):1193-1196. DOI: 10.1016/j.ajic.2014.08.002
9. Sister V.G., Tsedilin A.N., Ivannikova E.M., Tartakovskiy I.S., Shulga E.G. Filtering decontamination methods of hot water systems from legionella. Izvestiya MGTU “MAMI”. 2013; 2(3):7-12. EDN RYEAFJ. (rus.).
10. Ul’yanov A.N. Ultraviolet disinfection of natural aerobic spores for testing an ultraviolet reactor. AVOK. 2005; 4:28-30. (rus.).
11. Onishchеnko G.G., Pokrovsky V.I., Tartakovskii I.S., Maleev V.V., Lazikova G.F., Chistyakova G.G., Demina Yu.V. et al. Modern views on the epidemiology of legionellosis: operations procedure during epidemicoutbreaks and preventive monitoring. Journal of Microbiology, Epidemiology and Immunobiology. 2008; 2:1-10. EDN JSBSUX. (rus.).
12. Toropov A.L. On the problems of legionellа and other bacteria in individual and decentralized heating systems and hot water supply of combined heliosystems. Modern High Technologies. 2019; 3-2:256-260. EDN BIYCWO. (rus.).
13. Graham F.F., Hales S., White P.S., Baker M.G. Review Global seroprevalence of legionellosis — a systematic review and meta-analysis. Scientific Reports. 2020; 10(1). DOI: 10.1038/s41598-020-63740-y
14. Ghernaout D., Elboughdiri N., Lajimi R. Legionella: health impacts, exposure evaluation, and hazard reduction. Algerian Journal of Engineering and Technology. 2022; 6:43-61.
15. Toropov A.L. Autonomous low-power heat supply systems. Wall-mounted gas boilers and heat accumulators. Moscow, National Research Technological University “MISiS”, 2022; 176. DOI: 10.22227/978-5-7264-3110-9.2022.176. EDN CJWKLO. (rus.).
16. Toropov A. Gas-electric hybrid wall-mounted boiler. E3S Web of Conferences. 2023; 458:01032. DOI: 10.1051/e3sconf/202345801032
17. Wiik R., Krøvel A.V. Necessity and effect of combating legionella pneumophila in municipal shower systems. PLoS ONE. 2014; 9(12):e114331. DOI: 10.1371/journal.pone.0114331
18. Van Kenhove E., Dinne K., Janssens A., Lave-rge J. Overview and comparison of Legionella regulations worldwide. American Journal of Infection Control. 2019; 47(8):968-978. DOI: 10.1016/j.ajic.2018.10.006
19. Tartakovsky I.S., Gruzdeva O.A., Karpova T.I., Dronina Yu.E., Tarasova T.A., Loginova O.G. et al. Analysis of the different methodical approaches directed on the elimination of plankton forms and legionella biofilms from potentially dangerous water systems. Journal of Microbiology, Epidemiology and Immunobiology. 2018; 4:119-124. DOI: 10.36233/0372-9311-2018-4-119-124. EDN ZAMEZV. (rus.).
20. Stavrou V., Chatziprodromidou I., Vantarakis A. The battle against Legionella. Disinfection in manmade water systems: a systematic review. Journal of Environmental Science and Public Health. 2020; 4(3). DOI: 10.26502/jesph.96120098
21. Tartakovsky I.S., Demina Yu.V., Karpova T.I. Standardization of methodological approaches to the determination and monitoring of Legionella in potentially hazardous water systems in the Russian Federation. Questions of analytical control of water quality : materials of the XIII scientific and practical seminar. 2008; 62-64. (rus.).
22. Harrison T.G., Coetzee N., Duggal H. et. al. Outbreak in Stoke-on-Trent. Abst. of 1st meeting of the ESCMID study group for Legionella infection (ESGLI). Dresden, Germany, 2012; 21.
23. Blagonravova A.S., Chubukova O.A. Contemporary approaches to diagnostics of legionellosis. Medical Almanac. 2009; 2(7):58-61. EDN KIZVBJ. (rus.).
24. Tartakovsky I.S., Grusdeva O.A., Gabrielyan N.I. Current aspects of nosocomial Legionellosis profi laxis. Russian Journal of Transplantology and Artificial Organs. 2010; 12(4):61-71. EDN NRDNVH. (rus.).
25. Yeprikyan G.E., Borisov B.N. Legionella contamination in hot water supply systems. Modern Scientific Research and Innovation. 2021; 2(118):4. EDN FBRSZP. (rus.).
26. Portnyagina O.A. Diseases caused by Legionella. Student Scientific Forum : materials of the VII Interna-tional Student Scientific Conference. 2015. (rus.).
27. Guchev I.A., Melehina E.V., Maryin G.G., Klochkov O.I. Legionellosis: epidemiology, clinic, therapy and prophylaxis. Sanitary Doctor. 2009; 9:11-21. EDN RSQDGT. (rus.).
28. Zaitsev A.A. Legionella pneumonia. Directory of General Practitioners. 2009; 10:49-54. EDN RVSWND. (rus.).
29. Tartakovski L.S., Sinopalnikov A.L. Legionellosis: the role in human infectious diseases. Clinical Microbiology and Antimicrobial Chemotherapy. 2007; 9(3):219-233. EDN IAWQKX. (rus.).
30. Gruzdeva O.A., Tartakovskiy I.S., Karpova T.I., Marinenko O.V. Features of epidemiology and prevention methods of nosocomial legionellosis. Epidemiology and Vaccinal Prevention. 2014; 1(74):19-23. EDN RWLHLB. (rus.).
31. Kharchenko L.A. Pseudomonas aeruginosa: modern realities of antibiotic therapy. Emergency Medicine. 2015; 1(64):164-168. EDN TZFLHR. (rus.).
32. Tartakovsky I.S., Karpova T.I., Gruzdeva O.A., Marinenko O.V., Dronina Yu.E. Effect of temperature on the viability of plankton cells and model legionella pneumophila biofilms in water. Journal of Microbiology, Epidemiology and Immunobiology. 2015; 5:7-12. EDN ZQJYBT. (rus.).
33. Gruzdeva O.A. Scientific and methodological basis for ensuring the prevention of legionellosis in a megalopolis : abstract of dis. … doctor of medical sciences. Moscow, 2017; 48. (rus.).
34. Kirschner A.K.T. Determination of viable legionellae in engineered water systems: Do we find what we are looking for? Water Research. 2016; 93:276-288. DOI: 10.1016/j.watres.2016.02.016
35. Shaflik V. Modern hot water supply systems. Kyiv, DP IP. “Taki spravi”, 2010; 316. (rus.).
36. Tatarintsev V.A. Features of scale formation in heat exchanger tubes. Bulletin of South Ural State University. Series “Power Engineering”. 2022; 22(1):97-105. DOI: 10.14529/power220111. EDN MRZDPD. (rus.).
37. Toropov A.L. Application of electric boilers for water apartment heat supply. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(9):1451-1465. DOI: 10.22227/1997-0935.2023.9. 1451-1465 (rus.).
38. Schoenbauer B. Measured Performance of Natural Gas Tankless and Storage Water Heaters. Center for Energy and Environment, 2012; 59.
39. Krikotin V.V., Popov M.A. Oxygen diffusion in polymer pipes. Heat Supply News. 2013; 05(153). (rus.).
40. Silenko M. Housing and communal services should not be the cause of people’s suffering, or about what legionella is and how to fight it. Plumbing, Heating, Air Conditioning. 2007; 11. (rus.).
41. Shonina N.A. Selecting a hot water distribution scheme to reduce the risk of the spread of Legionella. Plumbing. Heating. Conditioning. Energy Efficiency. 2012; 4. (rus.).
42. Yeruslanov B.V., Svetoch E.A., Mitsevich I.P. Legionellosis and its laboratory diagnosis. Bacteriology. 2018; 3(3):58-67. DOI: 10.20953/2500-1027-2018-3-58-67. EDN VUDKXK. (rus.).
43. Storey M.V., Ashbolt J., Stenström T.A. Biofilms, thermophilic amoebae and Legionella pneumophila — a quantitative risk assessment for distributed water. Water Science and Technology. 2004; 50(1):77-82. DOI: 10.2166/wst.2004.0023
44. Khweek A.A., Amer A.O. Factors mediating environmental biofilm formation by legionella pneumophila. Frontiers in Cellular and Infection Microbio-logy. 2018; 8. DOI: 10.3389/fcimb.2018.00038
Review
For citations:
Toropov A.L. Sanitary and hygienic issues in the design of individual heat supply systems. Vestnik MGSU. 2024;19(10):1651-1665. (In Russ.) https://doi.org/10.22227/1997-0935.2024.10.1651-1665