Preview

Vestnik MGSU

Advanced search

Prospects for modifying the method of obtaining struvite from highly concentrated wastewater

https://doi.org/10.22227/1997-0935.2025.11.1718-1727

Abstract

Introduction. The paper examines the influence of impurities on struvite crystallization during nitrogen and phosphorus extraction from highly concentrated wastewater. The practical importance of considering inhibiting and intensifying factors to increase the yield and purity of the product is shown.

Materials and methods. The reviewed publications from 2006–2025 in Russian and English, selected by searching in large bibliographic databases, are summarized. The types of wastewater and process conditions (acidity range, magnesium, ammonium, and phosphate ratio, use of seed, reactor operating modes) and the influence of inorganic and organic impurities are analyzed.

Results. The main inhibitors are: calcium (conversion of phosphorus to calcium phosphates), iron (III) (competitive precipitation of iron phosphates), heavy metals (lattice defects and growth retardation), the carbonate system and dissolved carbon dioxide (reduced magnesium availability and the proportion of phosphate ions), and high-molecular organic substances (complexation and surface passivation). Small doses of aluminum with a coagulating effect, the use of solid particles as seed and optimization of the ionic strength are described as intensifiers.

Conclusions. For sustainable struvite formation in real wastewater, pretreatment (reduction of calcium and iron, removal of heavy metals and organic impurities) and supersaturation control (acidity control, removal of carbon dioxide, and the introduction of seeding agents) are required. Considering the composition of impurities increases the degree of extraction of phosphorus and ammonium nitrogen and improves the quality of the product.

About the Authors

V. S. Lipatov
Sergo Ordzhonikidze Russian State University for Geological Prospecting (MGRI)
Russian Federation

Vitaly S. Lipatov — postgraduate student of the Department of Construction of Water Supply and Sanitation Systems and Structures

23 Miklukho-Maklaya st., Moscow, 117485



E. S. Gogina
Sergo Ordzhonikidze Russian State University for Geological Prospecting (MGRI)
Russian Federation

Elena S. Gogina — Candidate of Technical Sciences, Associate Professor, Head of the Department of Construction of Water Supply and Sanitation Systems and Structures

23 Miklukho-Maklaya st., Moscow, 117485

RSCI AuthorID: 298730, Scopus: 55841908100, ResearcherID: P-7887-2015



References

1. Kozik A., Hutnik N., Piotrowski K., Mazienczuk A., Matynia A. Precipitation and crystallization of struvite from synthetic wastewater under stoichiometric conditions. Advances in Chemical Engineering and Science. 2013; 3(4):20-26. DOI: 10.4236/aces.2013.34B004

2. Saidou H., Korchef A., Moussa S.B., Amor M.B. Study of Cd2+, Al3+, and SO42– ions influence on struvite precipitation from synthetic water by dissolved CO2 degasification technique. Open Journal of Inorganic Chemistry. 2015; 5(3):41-51. DOI: 10.4236/ojic.2015.53006

3. Yan J., Ma M., Li F. Phosphorus recovery via struvite crystallization in batch and fluidized-bed reactors: Roles of microplastics and dissolved organic matter. Journal of Hazardous Materials. 2024; 476:135108. DOI: 10.1016/j.jhazmat.2024.135108

4. Wang S., Sun K., Xiang H., Zhao Z., Shi Y., Su L. et al. Biochar-seeded struvite precipitation for simultaneous nutrient recovery and chemical oxygen demand removal in leachate: From laboratory to pilot scale. Frontiers in Chemistry. 2022; 10. DOI: 10.3389/fchem.2022.990321

5. Krishnamoorthy N., Nzediegwu C., Mao X., Zeng H., Paramasivan B., Chang S.X. Biochar seeding properties affect struvite crystallization for soil application. Soil & Environmental Health. 2023; 1(2):100015. DOI: 10.1016/j.seh.2023.100015

6. Yan H., Shih K. Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis. Water Research. 2016; 95:310-318. DOI: 10.1016/j.watres.2016.03.032

7. Aleta P., Parikh S.J., Silchuk A.P., Scow K.M., Park M., Kim S. The effect of organic matter on the removal of phosphorus through precipitation as struvite and calcium phosphate in synthetic dairy wastewater. Membrane Water Treatment. 2018; 9(3):163-172. DOI: 10.12989/mwt.2018.9.3.163

8. Wu Y., Li J., Ma J., Xu L., Song X., Ding J. et al. Effects of ferric chloride on waste activated sludge and slaughterhouse waste anaerobic co-digestion. Rene-wable Energy. 2025; 239:122121. DOI: 10.1016/j.renene.2024.122121

9. Perwitasari D.S., Muryanto S., Schmahl W.W., Jamari J., Bayuseno A.P. A kinetic and structural analysis of the effects of Ca- and Fe ions on struvite crystal growth. Solid State Sciences. 2022; 134:107062. DOI: 10.1016/j.solidstatesciences.2022.107062

10. Muryanto S., Bayuseno A.P. Influence of Cu2+ and Zn2+ as additives on crystallization kinetics and morphology of struvite. Powder Technology. 2014; 253:602-607. DOI: 10.1016/j.powtec.2013.12.027

11. Wang W., Xin X., Li B., Huang H., Liu X., Song L. et al. Effect of organics on Cu and Cr in recovered struvite from synthetic swine wastewater. Journal of Cleaner Production. 2022; 360:132186. DOI: 10.1016/j.jclepro.2022.132186

12. Kabdaşlı I., Parsons S.A., Tünay O. Effect of major ions on induction time of struvite precipitation. Croatica Chemica Acta. 2006; 79(2):243-251

13. Dewar A.B., Mack G.E., Swansburg K.B. Effect of sodium hexametaphosphate on quality and the development of struvite in “chicken haddie”. Technical Report No. 6. Halifax (NS), Applied Research and Development Laboratory, Inspection Branch, Department of Fisheries and Forestry; Ottawa, Queen’s Printer for Canada, 1970; 22.

14. Chen R.F., Liu T., Rong H.W., Zhong H.T., Wei C.H. Effect of organic substances on nutrients recovery by struvite electrochemical precipitation from synthetic anaerobically treated swine wastewater. Membranes. 2021; 11(8):594. DOI: 10.3390/membranes11080594

15. Wei L., Hong T., Cui K., Chen T., Zhou Y., Zhao Y. et al. Probing the effect of humic acid on the nucleation and growth kinetics of struvite by constant composition technique. Chemical Engineering Journal. 2019; 378:122130. DOI: 10.1016/j.cej.2019.122130

16. Zhang Q., Zhao S., Ye X., Xiao W. Effects of organic substances on struvite crystallization and recovery. Desalination and Water Treatment. 2016; 57(23):10924-10933. DOI: 10.1080/19443994.2015.1040850

17. Song Y., Dai Y., Hu Q., Yu X., Qian F. Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater. Chemosphere. 2014; 101:41-48. DOI: 10.1016/j.chemosphere.2013.11.019

18. Saidou H., Korchef A., Ben Moussa S., Ben Amor M. Struvite precipitation by the dissolved CO2 degasification technique: Impact of the airflow rate and pH. Chemosphere. 2009; 74(2):338-343. DOI: 10.1016/j.chemosphere.2008.09.081

19. Korchef A., Saidou H., Ben Amor M. Phosphate recovery through struvite precipitation by CO2 removal: Effect of magnesium, phosphate and ammonium concentrations. Journal of Hazardous Materials. 2011; 186(1):602-613. DOI: 10.1016/j.jhazmat.2010.11.045

20. Hassan P., Mavinic D.S., Rezania B., Kelly H., Lo K.V. ANAMMOX combined with struvite crystallization: A sustainable solution for nitrogen and phosphorus removal and recovery from side stream processes. Proceedings of the Water Environment Federation. 2013; 4:318-327. DOI: 10.2175/193864713813525572


Review

For citations:


Lipatov V.S., Gogina E.S. Prospects for modifying the method of obtaining struvite from highly concentrated wastewater. Vestnik MGSU. 2025;20(11):1718-1727. (In Russ.) https://doi.org/10.22227/1997-0935.2025.11.1718-1727

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)