Preview

Vestnik MGSU

Advanced search

Concrete damage–plasticity model with double independent hardening

https://doi.org/10.22227/1997-0935.2024.4.527-543

Abstract

Introduction. Being an integral part of the modern construction, concrete is a complex nonlinear material. The behaviour of concrete depends to a large extent on stress–strain state and loading history. Among the structures of newly constructed and reconstructed buildings, there are a large number of elements operating in the conditions of the triaxial stress–strain state, alternating and cyclic loading. A phenomenological material model used in the numerical methods can serve as a universal tool that allows to describe the behavior of concrete under such conditions. The aim of the research is to develop the concrete model that allows to simulate material behavior with sufficient accuracy under static short-term loading. The model should reflect the key features, which characterizes the behaviour of concrete and have an algorithm for regularizing the problem of localization of irreversible deformations.

Materials and methods. This research is based on the analytical generalization and systematization of the data received from domestic and foreign sources devoted to the plasticity theory and fracture mechanics of concrete and reinforced concrete.

Results. The model was implemented in the ANSYS finite-element software package, with the help of which it is possible to apply custom material models. Comparison of the laboratory and numerical results for concrete and reinforced concrete was made.

Conclusions. The presented model allows to simulate behavior of concrete with substantial accuracy within the static short-term loading and reflects main features of the material behavior. To regularize the problem of localization of irreversible deformations, the model uses an approach based on the crack band theory. The values of all parameters required for the utilisation of the material model are presented.

About the Authors

A. M. Budarin
JSC Institute Hydroproject
Russian Federation

Alexander M. Budarin — chief specialist of the Structural analysis department

2 Volokolamskoe shosse, Moscow, 125993



G. I. Rempel
JSC Institute Hydroproject
Russian Federation

Georgy I. Rempel — chief expert of the Structural analysis department

2 Volokolamskoe shosse, Moscow, 125993



A. A. Kamzolkin
JSC NRC “Stadyo” (SRC “StaDiO”)
Russian Federation

Alexey A. Kamzolkin — lead engineer

18 3rd Yamskogo Polya st., Moscow, 125124



V. N. Alekhin
Ural Federal University named after the first President of Russia B.N. Yeltsin (UrFU)
Russian Federation

Vladimir N. Alekhin — Candidate of Technical Sciences, Associate Professor, Head of the Department of Computer-Aided Design Systems for Construction Projects

19 Mira st., Yekaterinburg, 620002

ID RSCI: 549888, Scopus: 7004307891, ResearcherID: B-4747-2016



References

1. Il’yushin A.A. Plasticity: fundamentals of general mathematical theory. Moscow, USSR Academy of Sciences Publishing House, 1963; 271. (rus.).

2. Geniev G.A., Kissyuk V.N., Tyupin G.A. Theory of plasticity of concrete and reinforced concrete. Moscow, Stroyizdat, 1974; 316. EDN RSNPAX. (rus.).

3. Leites E.S. To construct a theory of concrete deformation that takes into account the descending branch of the deformation diagram of the material : collection of scientific papers. Moscow, NIIZhB, 1982; 24-32. (rus.).

4. Yashin A.V. Theory of concrete deformation under simple and complex loads. Concrete and Reinforced Concrete. 1986; 8:39-42. (rus.).

5. Nedorezov A.V. Strain and strength of reinforced concrete elements in complex modes of triaxial stress composition : dis. ... cand. tech. sci. Makeevka, 2018. (rus.).

6. Karpenko N.I. General Models of the Reinforced Concrete Mechanics. Moscow, Stroyizdat, 1996; 416. (rus.).

7. Klovanich S.F. Finite element method in nonlinear problems of engineering mechanics. Zaporozhye, Publishing house of the magazine “Svit Geotekhniki”, 2009; 400. (rus.).

8. Kupfer H.B., Gerstle K.H. Behavior of concrete under biaxial stresses. Journal of the Engineering Mechanics Division. 1973; 99(4):853-866. DOI: 10.1061/jmcea3.0001789

9. Ottosen N.S. Constitutive model for short-time loading of concrete. Journal of the Engineering Mechanics Division. 1979; 105(1):127-141. DOI: 10.1061/jmcea3.0002446

10. Xing Y. Constitutive equation for concrete using strain-space plasticity model : Ph.D. Thesis. New Jersey, 1993.

11. Drucker D.C. Some implications of work hardening and ideal plasticity. Quarterly of Applied Mathematics. 1950; 7(4):411-418. DOI: 10.1090/qam/34210

12. Prager W. Recent developments in the mathematical theory of plasticity. Journal of Applied Physics. 1949; 20(3):235-241. DOI: 10.1063/1.1698348.

13. Rabotnov Yu.N. Introduction to fracture mechanics. Moscow, Nauka, 1987; 80. (rus.).

14. Lee J., Fenves L.G. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics. 1998; 124(8):892-900. DOI: 10.1061/(asce)0733-9399(1998)124:8(892)

15. Etse G., Willam K. Fracture energy formulation for inelastic behavior of plain concrete. Journal of Engineering Mechanics. 1994; 120(9):1983-2011. DOI: 10.1061/(asce)0733-9399(1994)120:9(1983)

16. Grassl P., Jirásek M. Damage-plastic model for concrete failure. International Journal of Solids and Structures. 2006; 43(22-23):7166-7196. DOI: 10.1016/j.ijsolstr.2006.06.032

17. Grassl P., Xenos D., Nyström U., Rempling R., Gylltoft K. CDPM2: A damage-plasticity approach to modelling the failure of concrete. International Journal of Solids and Structures. 2013; 50(24):3805-3816. DOI: 10.1016/j.ijsolstr.2013.07.008

18. Zreid I., Kaliske M. A gradient enhanced plasticity–damage microplane model for concrete. Computational Mechanics. 2018; 62(5):1239-1257. DOI: 10.1007/s00466-018-1561-1

19. Budarin A.M., Rempel G.I., Kamzolkyn A.A., Alekhin V.N. Stress-strain concrete model with double independent reinforcement. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(4):517-532. DOI: 10.22227/1997-0935.2023.4.517-532 (rus.).

20. Menetrey P., Willam K.J. Triaxial failure criterion for concrete and its generalization. ACI Structural Journal. 1995; 92(3). DOI: 10.14359/1132

21. Fib model code for concrete structures 2010. 2013. DOI: 10.1002/9783433604090

22. Jiang H., Zhao H. Calibration of the continuous surface cap model for concrete. Finite Elements in Analysis and Design. 2015; 97:1-19. DOI: 10.1016/j.finel.2014.12.002

23. Smith S.H. On fundamental aspects of concrete behavior : masters’s thesis. Boulder, University of Colorado at Boulder, 1985.

24. Soloviev L.Yu. Non-linear concrete model based on the plastic flow theory. Systems. Methods. Technologies. 2014; 4(24):131-140. EDN TFBEMN. (rus.).

25. Yang B.L., Dafalias J.F., Herrmann L.R. A bounding surface plasticity model for concrete. Journal of Engineering Mechanics. 1985; 111(3):359-380. DOI: 10.1061/(asce)0733-9399(1985)111:3(359)

26. Berg O.Ya. Physical foundations of the theory of strength of concrete and reinforced concrete. Moscow, Gosstroyizdat, 1962; 98. (rus.).

27. Istomin A.D., Belikov N.A. Dependence of the borders of the microcreeping in concrete from strengs and strain condition. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011; 2-1:159-162. EDN OUVYTL. (rus.).

28. Semenov A.S. Computational methods in theory of plasticity : textbook. St. Petersburg, Publishing House of the Polytechnic University, 2008; 210. EDN QJUTBT. (rus.).

29. Samani A.K., Attard M.M. Lateral strain model for concrete under compression. ACI Structural Journal. 2014; 111(2). DOI: 10.14359/51686532.

30. Bažant Z.P., Bishop F.C., Chang T. Confined compression tests of cement paste and concrete up to 300 ksi. ACI Journal Proceedings. 1986; 83(4). DOI: 10.14359/10448

31. Fossum A.F., Fredrich J.T. Cap plasticity models and compactive and dilatant pre-failure deformation. 4th North American Rock Mechanics Symposium. Seattle, Washington, 2000; 1169-1176.

32. Azadi Kakavand M.R., Taciroglu E. An enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading conditions. Frontiers of Structural and Civil Engineering. 2020; 14(6):1531-1544. DOI: 10.1007/s11709-020-0675-7

33. Bažant Z., Planas J. Fracture and size effect in concrete and other quasibrittle materials. Boca Raton, C.R.C., 1998. DOI: 10.1201/9780203756799

34. Jirásek M., Bauer M. Numerical aspects of the crack band approach. Computers & Structures. 2012; 110-111:60-78. DOI: 10.1016/j.compstruc.2012.06.006

35. Galavi V., Schweiger H.F. Nonlocal multilaminate model for strain softening analysis. International Journal of Geomechanics. 2010; 10(1):30-44. DOI: 10.1061/(asce)1532-3641(2010)10:1(30)

36. Bažant Z.P., Oh B.H. Crack band theory for fracture of concrete. Matériaux et Constructions. 1983; 16(3):155-177. DOI: 10.1007/bf02486267

37. Červenka J., Červenka V., Laserna S. On crack band model in finite element analysis of concrete fracture in engineering practice. Engineering Fracture Mechanics. 2018; 197:27-47. DOI: 10.1016/j.engfracmech.2018.04.010

38. Imran I., Pantazopoulou S.J. Experimental study of plain concrete under triaxial stress. ACI Materials Journal. 1996; 93(6). DOI: 10.14359/9865

39. Kupfer H.B., Gerstle K.H. Behavior of concrete under biaxial stresses. Journal of the Engineering Mechanics Division. 1973; 99(4):853-866. DOI: 10.1061/jmcea3.0001789

40. Caner F.C., Bažant Z.P. Microplane model M4 for concrete. II: Algorithm and calibration. Journal of Engineering Mechanics. 2000; 126(9):954-961. DOI: 10.1061/(asce)0733-9399(2000)126:9(954)

41. Gopalaratnam V.S., Shah S.P. Softening response of plain concrete in direct tension. ACI Journal Proceedings. 1985; 82(3). DOI: 10.14359/10338

42. Karsan I.D., Jirsa J.O. Behavior of concrete under compressive loadings. Journal of the Structural Division. 1969; 95(12):2543-2564. DOI: 10.1061/jsdeag.0002424

43. Guandalini S. Poinçonnement symétrique des dalles en béton armé : Ph.D. Thesis. Lausanne, 2006. DOI: 10.5075/epfl-thesis-3380

44. Kormeling H.A., Reinhardt H.W. Determination of the fracture energy of normal concrete and epoxy modified concrete. Stevin Laboratory, Delft University of Technology, Report No. 5-83-18, 1983.


Review

For citations:


Budarin A.M., Rempel G.I., Kamzolkin A.A., Alekhin V.N. Concrete damage–plasticity model with double independent hardening. Vestnik MGSU. 2024;19(4):527-543. (In Russ.) https://doi.org/10.22227/1997-0935.2024.4.527-543

Views: 673


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-0935 (Print)
ISSN 2304-6600 (Online)