Smooth hyperelastic potentials for 1d problems of bimodular materials
https://doi.org/10.22227/1997-0935.2025.11.1679-1690
Abstract
Introduction. A large number of natural and artificial materials exhibit various mechanical properties under compression and tension. Such materials are called bimodular. It can also be noted that materials having the same modulus of elasticity under compression and tension during testing exhibit bimodular properties during their operation in building structures.
Materials and methods. The research described in the paper is related to the construction of a family of one-parameter smooth infinitely differentiable hyperelastic potentials for incompressible bimodular materials in one-dimensional motion; the derivation of closed-form solving equations, including the equation of motion, the Hadamard compatibility equation and the energy balance equation; performing a dynamic analysis of the propagation of harmonic vibrations in a semi-infinite rod. The developed method is based on a combined mechanical and thermodynamic approach combined with an energy-saving explicit numerical Lax – Wendroff scheme.
Results. A family of one-parameter infinitely differentiable hyperelastic potentials for three-dimensional infinitesimal problems on bimodular isotropic materials is constructed, which gives a set of homogeneous approximations to the discontinuous stepwise modulus of elasticity adopted in the initial one-dimensional bimodular formulation. The introduced dependencies make it possible either to obtain analytical solutions or to derive explicit solving equations for a number of static and dynamic problems. The theorem of convergence to a discontinuous module for bimodular materials is proved.
Conclusions. Shock wave fronts that appear in one-dimensional rods made of nonlinear materials modeled by a family of smooth hyperelastic potentials clearly demonstrate that their formation is not caused by a discontinuity in the stress-strain ratio corresponding to bimodular materials. Shock wave fronts occur in materials modeled by the considered smooth hyperelastic potentials both in the case of bimodular material and any other hyperelastic material. The propagation of shock wave fronts leads to the dissipation of mechanical energy, which implies a decrease in amplitudes with distance.
About the Authors
S. V. KuznecovRussian Federation
Sergey V. Kuznecov — Doctor of Physico-Mathematical Sciences, Professor, Acting Head of the Department of Structural and Theoretical Mechanics
26 Yaroslavskoe shosse, Moscow, 129337
Scopus: 7202573564, ResearcherID: H-9448-2013
S. A. Kalinovsky
Russian Federation
Sergey A. Kalinovsky — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Structural and Theoretical Mechanics
26 Yaroslavskoe shosse, Moscow, 129337
RSCI AuthorID: 670367, Scopus: 57202802927, ResearcherID: AAR-1204-2021
References
1. Misseri G., Rovero L. Rammed earth as bi-modulus material: Experimental and analytical investigations through Euler-Bernoulli and Timoshenko beam models. International Journal of Masonry Research and Innovation. 2022; 7(5):482. DOI: 10.1504/ijmri.2022.125359
2. Kovtanyuk L.V., Panchenko G.L., Popova E.O. On modeling of large strains of multimodulus elastic media. Bulletin of the Yakovlev Chuvash State Pedagogical University. Series: Mechanics of Limit State. 2023; 1(55):5-12. DOI: 10.37972/chgpu.2023.55.1.001. EDN DZJIJP. (rus.).
3. Caporale A., Parisi F., Asprone D., Luciano R., Prota A. Critical surfaces for adobe masonry: Micromechanical approach. Composites Part B: Engineering. 2014; 56:790-796. DOI: 10.1016/j.compositesb.2013.08.087
4. Guo Y., Wen S.R., Sun J.Y., He X.T. Theoretical study on thermal stresses of metal bars with different moduli in tension and compression. Metals. 2022; 12(2):347. DOI: 10.3390/met12020347
5. Qiu Y., Shen W., Yan R., Li X., Ye Z., Li M. et al. An improved numerical method for calculating mechanical properties of bi-modulus sandwich composite structures. Ocean Engineering. 2022; 250:110998. DOI: 10.1016/j.oceaneng.2022.110998
6. Adamov A.A. Methodological problems in experimental studies and verification of the governing equations of the theory of elasticity for an isotropic body with different moduli in tension and compression. Journal of Applied Mechanics and Technical Physics. 2020; 61(6):(364):82-90. DOI: 10.15372/PMTF20200611. EDN HLBYZF. (rus.).
7. Krivchun N.A., Umanskaya O.L. Bending a composite plate made of multi-modulus materials. Boundary condition. Modern High Technologies. 2020; 6-1:56-60. DOI: 10.17513/snt.38071. EDN PVOOJE. (rus.).
8. Rosakis P., Notbohm J., Ravichandran G. A model for compression-weakening materials and the elastic fields due to contractile cells. Journal of the Mechanics and Physics of Solids. 2015; 85:16-32. DOI: 10.1016/j.jmps.2015.08.013
9. Nazarov V.E., Kiyashko S.B., Radostin A.V. Self-similar waves in media with bimodular elastic nonlinearity and relaxation. Russian Journal of Nonlinear Dynamics. 2015; 11(2):209-218. EDN UBLNYP. (rus.).
10. Goldstein R.V., Osipenko N.M. About compression fracture. Physical Mesomechanics. 2018; 21(3):86-102. DOI: 10.24411/1683-805X-2018-13009. EDN XRGSGL. (rus.).
11. Patel S., Martin C.D. Application of flattened Brazilian test to investigate rocks under confined extension. Rock Mechanics and Rock Engineering. 2018; 51(12):3719-3736. DOI: 10.1007/s00603-018-1559-1
12. Pakhomov B.M. Alternative model of isotropic material with different modulus. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering. 2017; 6(117):35-48. DOI: 10.18698/0236-3941-2017-6-35-48. EDN ZVZBQL. (rus.).
13. Jiang K., Qi C., Zhu S., Jin T. Study of the frequency response of the block–rock mass with bimodulus characteristics. IOP Conference Series: Earth and Environmental Science. 2020; 570(5):052006. DOI: 10.1088/1755-1315/570/5/052006
14. Mahfouz I.A., Badrakhan F. Chaotic behaviour of some piecewise-linear systems. Part I: systems with set-up spring or with unsymmetric elasticity. Journal of Sound and Vibration. 1990; 143(2):255-288. DOI: 10.1016/0022-460x(90)90954-x
15. Ostrovsky A. Wave processes in media with strong acoustic nonlinearity. The Journal of the Acoustical Society of America. 1991; 90(6):3332-3337. DOI: 10.1121/1.401444
16. Ostrovsky L.A., Starobinets I.M. Transitions and statistical characteristics of vibrations in a bimodular oscillator. Chaos: An Interdisciplinary Journal of Nonlinear Science. 1995; 5(3):496-500. DOI: 10.1063/1.166121
17. Shaw S.W., Holmes P.J. A periodically forced piecewise linear oscillator. Journal of Sound and Vibration. 1983; 90(1):129-155. DOI: 10.1016/0022-460x(83)90407-8
18. Shulman J.N. Chaos in piecewise-linear systems. Physical Review A. 1983; 28(1):477-479. DOI: 10.1103/physreva.28.477
19. Zhou N., Liu K. A tunable high-static–low-dynamic stiffness vibration isolator. Journal of Sound and Vibration. 2010; 329(9):1254-1273. DOI: 10.1016/j.jsv.2009.11.001
20. Bert C.W., Kumar M. Vibration of cylindrical shells of bimodulus composite materials. Journal of Sound and Vibration. 1982; 81(1):107-121. DOI: 10.1016/0022-460x(82)90180-8
21. Bert C.W., Reddy J.N., Chao W.C., Reddy V.S. Vibration of thick rectangular plates of bimodulus composite material. Journal of Applied Mechanics. 1981; 48(2):371-376. DOI: 10.1115/1.3157625
22. Du L., Li F., Liu Q. A study on determination of application limits of bimodulus calculation using spherical stress tensor method. Journal of Reinforced Plastics and Composites. 2017; 36(7):479-490. DOI: 10.1177/0731684416684210
23. Khan A.H., Patel B.P. Nonlinear forced vibration response of bimodular laminated composite plates. Composite Structures. 2014; 108:524-537. DOI: 10.1016/j.compstruct.2013.09.054
24. Khan K., Patel B.P., Nath Y. Free and forced vibration characteristics of bimodular composite laminated circular cylindrical shells. Composite Structures. 2015; 126:386-397. DOI: 10.1016/j.compstruct.2015.02.022
25. Lucchesi M., Pagni A. Longitudinal oscillations of bimodular rods. International Journal of Structural Stability and Dynamics. 2005; 5(1):37-54. DOI: 10.1142/S0219455405001490
26. Moon F.C. Chaotic Vibrations. John Wiley & Sons, 1987; 309.
27. Gavrilov S.N., Herman G.C. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. Journal of Sound and Vibration. 2012; 331(20):4464-4480. DOI: 10.1016/j.jsv.2012.05.022
28. Ilyashenko A.V., Kuznetsov S.V. Pochhammer–Chree waves: polarization of the axially symmetric modes. Archive of Applied Mechanics. 2018; 88(8):1385-1394. DOI: 10.1007/s00419-018-1377-7
29. Krylov V.V. Acoustic black holes for flexural waves: a smart approach to vibration damping. Procedia Engineering. 2017; 199:56-61. DOI: 10.1016/j.proeng.2017.09.150
30. Kuznetsova M., Khudyakov M., Sadovskii V. Wave propagation in continuous bimodular media. Mechanics of Advanced Materials and Structures. 2022; 29(21):3147-3162. DOI: 10.1080/15376494.2021.1889725
31. Trujillo L., Peniche F., Sigalotti L.D.G. Derivation of a Schrödinger-like equation for elastic waves in granular media. Granular Matter. 2010; 12(4):417-436. DOI: 10.1007/s10035-010-0190-y
32. Dudko O.V., Lapteva A.A., Ragozina V.E. Nonstationary 1D dynamics problems for heteromodular elasticity with piecewise-linear approximation of boundary conditions. PNRPU Mechanics Bulletin. 2019; 4:37-47. DOI: 10.15593/perm.mech/2019.4.04. EDN PCRUTF. (rus.).
33. Grazzini R., Misseri G., Rovero L. A bi-modulus material model for bending test on NHL3.5 lime mortar. Materials. 2023; 16(2):486. DOI: 10.3390/ma16020486
34. Sun J., Zhu H., Qin S., Yang D., He X. A review on the research of mechanical problems with different moduli in tension and compression. Journal of Mechanical Science and Technology. 2010; 24(9):1845-1854. DOI: 10.1007/s12206-010-0601-3
35. Zhang X., Garijo L., Ruiz G., Ortega J. Loading-rate effect on the fracture response of natural hydraulic and aerial-lime mortars. Journal of Materials in Civil Engineering. 2020; 32(9). DOI: 10.1061/(ASCE)MT.1943-5533.0003358
36. Hemmerle A., Schröter M., Goehring L. A cohesive granular material with tunable elasticity. Scientific Reports. 2016; 6(1). DOI: 10.1038/srep35650
37. Makse H.A., Gland N., Johnson D., Schwartz L. Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics. Physical Review E. 2004; 70(6). DOI: 10.1103/physreve.70.061302
38. Royer D., Dieulesaint E. Elastic Waves in Solids I: Free and Guided Propagation. Springer, 1996; 374.
39. Zemanek J. An experimental and theoretical investigation of elastic wave propagation in a cylinder. The Journal of the Acoustical Society of America. 1972; 51(1B):265-283. DOI: 10.1121/1.1912838
40. Goldstein R.V., Dudchenko A.V., Kuznetsov S.V. The modified Cam-Clay (MCC) model: cyclic kinematic deviatoric loading. Archive of Applied Mechanics. 2016; 86(12):2021-2031. DOI: 10.1007/s00419-016-1169-x
41. Goldstein R.V., Kuznetsov S.V. Long-wave Asymptotics of Lamb waves. Mechanics of Solids. 2017; 52(6):700-707. DOI: 10.3103/s0025654417060097
42. Djeran-Maigre I., Kuznetsov S.V. Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates. Acoustical Physics. 2014; 60(2):200-207. DOI: 10.1134/s106377101402002x
43. Cacciafesta F., D’Ancona P., Lucà R. A limiting absorption principle for the Helmholtz equation with variable coefficients. Journal of Spectral Theory. 2018; 8(4):1349-1392. DOI: 10.4171/jst/229
44. Makarov O.I., Shanin A.V., Korolkov A.I. The Sommerfeld integral in problems of modeling acoustic wave diffraction using a triangular grid. Acoustical Physics. 2023; 69(2):129-145. DOI: 10.31857/S0320791923600105. EDN IULQGZ. (rus.).
45. Truesdell C., Noll W. The Non-Linear Field Theories of Mechanics. Springer Berlin Heidelberg, 2004; 602. DOI: 10.1007/978-3-662-10388-3
46. Kuznetsov S.V. Abnormal dispersion of flexural Lamb waves in functionally graded plates. Zeitschrift für angewandte Mathematik und Physik. 2019; 70(3). DOI: 10.1007/s00033-019-1132-0
47. Lax P.D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia, 1973. DOI: 10.1137/1.9781611970562
48. Kostikov Yu.A., Romanenkov A.M. Hybrid scheme for the numerical solution of a nonlinear Euler’s equation. Differential Equations and Control Processes. 2021; 2:80-86. EDN BCJXPC. (rus.).
49. Cellier F.E., Kofman E. Continuous System Simulation. Springer Science & Business Media, Berlin, 2006.
50. Kravtsov A.V., Kuznetsov S.V., Sekerzh-Zen’kovich S.Ya. Finite element models in Lamb’s problem. Mechanics of Solids. 2011; 46(6):952-959. DOI: 10.3103/s002565441106015x
51. Kuznetsov S.V. “Forbidden” planes for Rayleigh waves. Quarterly of Applied Mathematics. 2002; 60(1):87-97. DOI: 10.1090/qam/1878260
52. Kuznetsov S.V. Subsonic Lamb waves in anisotropic plates. Quarterly of Applied Mathematics. 2002; 60(3):577-587. DOI: 10.1090/qam/1914442
53. Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains. Computers and Geotechnics. 2019; 109:69-81. DOI: 10.1016/j.compgeo.2019.01.019
54. Bykov V.G. Development of sliding regimes in faults and slow strain waves. Physical Mesomechanics. 2019; 22(4):39-46. DOI: 10.24411/1683-805X-2019-14004. EDN OHCQWY.(rus.).
55. Kuznetsov S.V., Terentjeva E.O. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source. Acoustical Physics. 2015; 61(3):356-367. DOI: 10.1134/s1063771015030112
56. Truesdell C. General and exact theory of waves in finite elastic strain. Archive for Rational Mechanics and Analysis. 1961; 8(1):263-296. DOI: 10.1007/bf00277444
Review
For citations:
Kuznecov S.V., Kalinovsky S.A. Smooth hyperelastic potentials for 1d problems of bimodular materials. Vestnik MGSU. 2025;20(11):1679-1690. (In Russ.) https://doi.org/10.22227/1997-0935.2025.11.1679-1690












